INDEXING

Aims and Scope

The aim of the Diet Factor is to offer the scientists and researchers an international forum to enable the rapid dissemination of practical and social applications of research at the forefront of food and nutritional sciences as well as the interdisciplinary research that spans these two fields. Diet Factor publishes double blind peer-reviewed articles that covers all aspects of food science, including the interface between production agriculture and food, as well as how food science influences health and nutrition. In all cases, the key findings in multi-disciplinary articles must address some innovative or controversial practices related to food science.

Diet Factor is committed to maintain the highest standards of professional ethics, accuracy, and quality in all matters related to handling manuscripts and reporting scientific information. The journal welcomes empirical and applied research, viewpoint papers, conceptual and technical papers, case studies, meta-analysis studies, literature reviews, mini reviews and letter to the editors which take a scientific approach to the topics related to health and nutrition.

Types of Articles

- Research Papers
- Short Communications
- Review and Mini-reviews
- Commentaries
- Perspectives and Opinions
- Meta Analysis
- Case Reports
- Case Studies
- Case Control Studies

Reviews on recent progress in food sciences are commissioned by the editors. The purpose of the Diet Factor is to publish scientific and technical research papers to bring attention of International Researchers, Scientists, Academicians, and Health Care Professionals towards recent advancements in food sciences. The articles are collected in the form of reviews, original studies, clinical studies among others. It may serve as a global platform for scientists in relevant fields to connect and share ideas mutually. This journal is open to all the research professionals whose work fall within our scope. Submissions are welcome and may be submitted here.

editor@dietfactor.com.pk

Title

The title of the paper should provide a concise statement of the contents of the paper. A good title is very important and will attract readers and facilitate retrieval by online searches, thereby helping to maximize citations. The title should include topical keywords and allude to the interesting conclusions of the paper. A title that emphasizes the main conclusions, or poses a question, has more impact than one that just describes the nature of the study.

Running Head

Running head should be added in the header along with the page numbers.

Type of Article

Research Article/ Case Report/ Review Article/ Opinion/ Short Communication/ Mini Review/ Letter to Editor

Running Title: A short version of the paper title.

Keywords The major keywords used in the article have to be mentioned.

Authors

List here all author names Author¹, Author² and Author³

¹Author department, University, Country

²Author department, University, Country

³Author department, University, Country

*Corresponding Author

Author name, Affiliation, Department Name, University Name, Address, City, State, Country, E-mail:

Abstract

Abstract should include a brief content of the article. It should be structured not more than 250 words. It should include following sub headings: Objective, Methods, Results, Conclusions.

Abbreviations

If there are any abbreviations in the article they have to be mentioned.

INTRODUCTION

Provide a context or background for the study (i.e., the nature of the problem and its significance). State the specific purpose or research objective of, or hypothesis tested by, the study or observation; the research objective is often more sharply focused when stated as a question. Both the main and secondary objectives should be made clear, and any pre-specified subgroup analyses should be described. Give only strictly pertinent references and do not include data or conclusions from the work being reported.

METHODS

The Methods section should include only information that was available at the time the or plan of the protocol. All information gathered during the conduct of study should be included in the methods section.

Study Design, Inclusion / Exclusion Criteria, Data Collection Procedure, Statistical Analysis.

RESULTS

Present your results in logical sequence in the text, tables and illustrations, giving the main or most important findings first.

Do not repeat text that is already present in tables and illustrations. emphasize or summarize only important observations. When data are summarized in the Results section, give numeric results not only as derivatives (for example, percentages) but also as the absolute numbers from which the derivatives were calculated, and specify the statistical methods used to analyze them. Table font should be 10 and caption should be above the table and below the figure.

Data should not be duplicated in both figures and tables. The maximum limit of tables and figures should not exceed more than 4. Mention the findings of the study in paragraph, while mentioning figure and table number in text in sequential order.

TABLE

Table should not be copy pasted or in picture form.

DISCUSSION

Discuss your findings by comparing your results with other literature.

REFERENCES

References should not be less than 20. In text references should be in number style. For Example [1] Follow the Pubmed Referencing style. Provide the DOI link.

Example

Cook NR, Rosner BA, Hankinson SE, Colditz GA. Mammographic screening and risk factors for breast cancer. American Journal of Epidemiology. 2009 Dec; 170(11):1422-32. doi: 10.1093/aje/kwp304.

If there are more than six authors, write et al. after the first six names.

CONCLUSION(S)

Conclusion should elucidate how the results communicate to the theory presented as the basis of the study and provide a concise explanation of the allegation of the findings.

ACKNOWLEDGEMENT

Provide the list of individuals who contributed in the work and grant details where applicable.

Plagiarism policy

Similarity index should be less than 19, and less than 5 from individual sources.

Authorship Letter

Signed authorship letter by all authors including there current department, University, City, Country, Email.

Declaration Form

Signed declaration form submit by corresponding author.

The submission of article should include: manuscript according to journal guidelines, authorship letter, declaration form. It should be submitted to the following email id: editor@dietfactor.com.pk

JOURNAL OF NUTRITIONAL FACTOR & FOOD SCIENCES

DITIONAL TEAM

ISSN Online (2789-8105) ISSN Print (2789-8091)

VOLUME 6

Patron-in-Chief

Prof. Dr. Riffat Mehboob, Ph.D

National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, United States
Lahore Medical Research Center LLP, Lahore, Pakistan riffat.pathol@gmail.com

Editor-in-Chiefs

Dr. Muhammad Imran, Ph.D

Department of Food Science & Technology, University of Narowal, Narowal, Pakistan

Editors

Dr. Ammar Ahmad Khan, Ph.D

Associate Professor
The University of Lahore, Lahore, Pakistan

Dr. Shakira Ghazanfar, Ph.D

Senior Scientific Officer NARC, National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan

Section Editor

Dr. Hina Mukhtar, Ph.D

Research Scientist Ocean University, China

Production Editor

Zeeshan Mehboob

Rotogen Biotech (Pvt) Ltd, Lahore, Pakistan

Managing Editor

Khurram Mehboob

Rotogen Biotech (Pvt) Ltd, Lahore, Pakistan

Biostatistician

Humaira Waseem

Fatima Jinnah Medical University, Lahore, Pakistan

Asim Raza

CMH Lahore Medical College, Lahore, Pakistan

Muhammad Haris

Mayo Hospital, Lahore, Pakistan

Sheraz Ahmed

University of Management and Technology, Lahore, Pakistan

Advisory Board Members

Prof. Dr. Muhammad Umair Arshad, Ph.D

Professor

GC University Faisalabad, Faisalabad, Pakistan

Dr. Shazia Zahra, Ph.D

Assistant Professor

Fatima Memorial System & NUR International University, Lahore, Pakistan

Dr. Anees Ur Rehman, Ph.D

Assistant Professor

Ruth Pfau College of Nutrition Sciences, Lahore, Pakistan

Dr. Shahbaz Ahmed Zakki, Ph.D

Assistant Professor

The University of Haripur, Haripur, Pakistan

U E

ISSN Online (2789-8105) ISSN Print (2789-8091)

National Members

Dr. Abdul Waheed, Ph.D

Professor

PMAS Arid Agriculture University, Rawalpindi, Pakistan

Dr. Muhammad Zia-ur-Rehman, Ph.D

Associate Professor

Higher Education Department, Lahore, Pakistan

Dr. Zahoor Sajid, Ph.D

Assistant Professor

University of the Punjab, Lahore, Pakistan

Dr. Ambreen Ahmed, Ph.D

Associate Professor

University of the Punjab, Lahore, Pakistan

Dr. Umar Bacha, Ph.D

Associate Professor

University of Management and Technology, Lahore, Pakistan

Dr. Malik Adil Abbas, Ph.D

Assistant Professor

Higher Education Department, Lahore, Pakistan

International Member

Prof. Naheed Mojgani

Professor

Razi Vaccine & Serum Research Institute Azemieh, Khosravi Ave Hessarak, karaj, Iran

Dr. Muhammad Imran Sajid

Post Doctoral Research Associate

Chapman University School of Pharmacy, California, United States

3

ABLE OF CONTENTS

ISSN Online (2789-8105) ISSN Print (2789-8091)

V O L U M E 6

Editorial

Artificial intelligence and revolutionization in the field of food science Shakira Ghazanfar

01

Original Article

Quality Assurance of Commercial Dog Food in Terms of Proximate and Aflatoxins Analysis

Naseem Zahra, Muhammad Khalid Saeed, Shumaila Usman, Asma Saeed, Saima Nazir, Ammara Yasmeen

02-05

Nutritional, Antioxidative and Aflatoxin Safety Assessment of Ginger-Turmeric Tea: A Functional Herbal Beverage Tea

Muhammad Khalid Saeed, Naseem Zahra, Hafiza Kainat Anwar, Shaheena Anjum, Amara Khan, Asma Saeed, Sadaf Javeria

06-11

The Rising Trend of Energy Drink Consumption amon<mark>g University Students: A Hidden Health Risk</mark>

Irzah Faroog and Manahl Imran

12-17

Association Between Plant-Based Dietary Intake and Anthropometric Measurements

Tehmina Bashir, Adnan Mehmood, Rabia Nazeer

18-21

A Comprehensive Survey Report On Caffeine Effect On Academic Performance Maria Aslam, Anoosha Daud, Laiba Khursid, Maryam Naseem Lodhi, Nashima Zahid, Minahil Aftab Rai, Amina Khalid

22-26

DIET FACTOR

Journal of Nutritional & Food Sciences

https://www.dietfactor.com.pk/index.php/df ISSN (E): 2789-8105, (P): 2789-8091 Volume 6, Issue 3 (July-Sep 2025)

Artificial intelligence and revolutionization in the field of food science

Shakira Ghazanfar¹

National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan shakira_akmal@yahoo.com

ARTICLE INFO

How to Cite:

Ghazanfar, S. (2025). Artificial intelligence and revolutionization in the field of food science: Revolutionizing Food Science Through Al. DIET FACTOR (Journal of Nutritional and Food Sciences), 6(3). https://doi.org/10.54393/df.v6i3.180

The trend of Al gradually becoming prominent in most disciplines of science and it was not long before it affected biology. It is revolutionizing every aspect of animals concerning health, nutritional status, and productivity in the course of animal agriculture. For instance, the requirements for food and animal products are increasing day by day which is increasing the demand for operational effectiveness. People are using Artificial Intelligence in feeding strategies to improve and also to advance the health of the animals within farms and to increase food production thus bringing visions and innovations for a sustainable agriculture sector.

Animal nutrition did not meet individual demands based on some of the standards that were provided. All presents various solutions since, through the use of big data, it is possible to identify animal responses to various feeding regimens. This makes it possible to come up with diets depending on individual animals which are a healthier way to make the animals more productive.

It also helps in tracking other factors such as feed consumption, weight gain, feed-to-gain ratio, and general production proficiency. In such cases feeding adjusting strategies can be ensured in the best way possible to suppress the given condition in the shortest period. An efficient feeding system in our software makes sure that the animals get the right feed at the right time to maximize its/her growth and minimal wastage likely to pollute the environment. This precise feeding practice enhances feed usage by the animals, which is another factor that contributes to the economic feasibility of the animal farming business. One of the major innovations in refined livestock farming is precision farming which focuses on feeding processes whereby feeds are prescribed depending on the needs of particular animals. An automated feeding model was devised that was able to avoid either underfeeding or overfeeding, the nutrient intake, and the time at which the food was going to be fed to the body.

Al also improves knowledge of the animal's gut microbial ecosystem which is a mix of microorganisms that inhabit the animal gut. Animal microbiota plays an important role in participating in digestion and nutrient assimilation processes and the immune system of an animal. Al in turn assists in the determination of microbial population that enhances animal health and performance and synthesizes new microbial consortiums that can be added to animal feed. Amenable animal feeds that unsurpassed the microbiota of healthy human beings may help in digestion, health, and feed conversion. These interventions are well-known ways of increasing the general health and productivity of animals among farmers, and with the help of Al, these interventions can be improved. The application of Al to the genetics of animals also extends it more into nutrition. Al uses feeding regimens from a pet's DNA to develop unique feeding plans that best suit the genetics of the animal. Not only does this method enhance efficiency but also the health of the animals is enhanced as well.

Artificial intelligence is taking up the challenge of feeding, nutrition, and welfare, as well as the excellent performance of animals and making the process more efficient and specific. Artificial Intelligence remains to develop better approaches in the enhancement of animal well-being, mechanisms of farming, and general food production.

DIET FACTOR

Journal of Nutritional & Food Sciences

https://www.dietfactor.com.pk/index.php/df ISSN (E): 2789-8105, (P): 2789-8091 Volume 6, Issue 3 (July-Sep 2025)

Original Article

Quality Assurance of Commercial Dog Food in Terms of Proximate and Aflatoxins Analysis

Naseem Zahra¹, Muhammad Khalid Saeed¹, Shumaila Usman¹, Asma Saeed¹, Saima Nazir¹ and Ammara Yasmeen¹

¹Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan

ARTICLE INFO

Keywords:

Dog Food, Proximate Analysis, Aflatoxins, Threat

How to Cite:

Zahra, N., Saeed, M. K., Usman, S., Saeed, A., Nazir, S., & Yasmeen, A. (2025). Quality Assurance of Commercial Dog Food in Terms of Proximate and Aflatoxins Analysis: Commercial Dog Food in Proximate and Aflatoxins Analysis. DIET FACTOR (Journal of Nutritional and Food Sciences), 6(3), 02-05. https://doi.org/10.54393/df.v6i3.175

*Corresponding Author:

Muhammad Khalid Saeed

Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan

rosefbrc1@gmail.com

Received Date: 2nd July, 2025 Revised Date: 13th August, 2025 Acceptance Date: 21st August, 2025 Published Date: 30th September, 2025

ABSTRACT

The domestication of the dog has been extensive and continues to grow, predominantly in terms of their dietary habits. Primarily, wild dogs depended exclusively on hunting for their food, but with the passage of time and domestication, they started consuming meals provided by humans. Objective: To evaluate the quality of dry dog food, focusing particularly on evaluating its aflatoxin contamination and proximate analysis comparable to established nutritional standards for dogs. Methods: This experimental research was conducted at the Food Department within the PCSIR Laboratories Complex in Lahore, Pakistan. The sample was chosen purposively to check the quality of pet dog food. The analysis included determining the moisture content, ash, crude fiber, and crude protein levels of the dog food using standardized methods. **Results:** The purchased dog food exhibited a protein content of $20.64 \pm 0.40\%$ and a calculated energy value of 376.50 ± 0.25 Kcal/100g. The results were evaluated against the nutrient benchmarks established by AAFCO (Association of American Feed Control Officials). The minimum protein level in adult dog food, calculated on a dry matter basis, must be no less than 18% according to AAFCO guidelines. Conclusion: Conspicuously, the analysis depicted that aflatoxins (B1, B2, G1, G2) were not present in the dog food, confirming its safe consumption by dogs based on the aflatoxin assessment. So, it was revealed that according to nutritional and aflatoxin analysis of dog food obtained from the market, it was for the dog's health.

INTRODUCTION

The increasing prevalence of pets in households is driving dynamic growth in the pet food market. Today, pet food is commonly utilized by numerous pet owners due to its ease, affordability, and accessibility, providing a trustworthy means of feeding pets throughout their lives. With an improved understanding of dogs' nutritional requirements, diets can now be tailored based on breed, age, and activity level. As dogs are often seen as integral members of the family, owners are increasingly focusing on the dietary needs of both their pets and themselves [1]. It is assumed that the pet food industry will be increasing at an annual rate of 2.6% [2]. The contamination by biological, physical

and chemical components in the food of animals can pose significant risks in that they may cause sickness or loss in animals; if appropriate controls in production are not taken [3]. The most common kind of pet food in the market is normally dry, hence quite convenient in storage and effectively satisfies the nutritional needs of pets. Under EU directives (EC 767/2009), a complete diet of whole pet food used as the only nutrient source over a prolonged time meets the complete dietary requirements of the given animals in terms of their species and their stage of life [4]. Consequently, it is imperative to assess the quality of pet food, and numerous studies have been conducted to

examine dog food [5, 6]. Another serious potential threat related to animal feed security is the occurrence of fungi and mycotoxins[7]. Comprehending the link between food, feed, and fungi is important for assessing the threat of mycotoxin infectivity. The studies have shown that these toxins in pet foods can present significant dangers to the health of pets, resulting in both severe and chronic poisoning based on the degree of contamination and the duration of contact [8]. The dogs, especially, are particularly vulnerable to the severe hepatotoxic impacts of aflatoxins [9]. Aflatoxins represent a class of tremendously harmful mycotoxins that can spoil various feed products, including commercially accessible dog food. This contamination presents a grave health threat to dogs, as aflatoxins are linked to many health issues such as liver damage, weakened immune response, and cancer. The study underscores the requirement of regular inspection for aflatoxin contamination in commercial dog food, mainly in repackaged products. It is necessary to uphold high hygiene standards during the storage and repackaging processes to prevent the formation of aflatoxins[10].

This study aimed to assess the quality of dry food for adult dogs, focusing specifically on evaluating its proximate analysis and adherence to established nutritional quidelines for dogs.

METHODS

This experimental research was conducted at the Food Department within the PCSIR Laboratories Complex in Lahore, Pakistan. The sample was chosen purposively to check the quality of pet dog food. The dry dog food (1 kg) in pellet form was obtained from a supermarket in Lahore, Pakistan, to analyze the information regarding proximate aspects of packaging material (March to May 2025). The dog food sample was ground to a mesh size of 1mm and was stored in sealed plastic bags in a cool, dry location to conserve its nutritional quality. The sample was preserved till the experimental lab analysis. Analysis involved an evaluation of moisture content, ash, crude fiber and crude protein contents of the dog food on standard standards. Dietary assessment of the reviewed pet food was determined using a dry matter (DM), crude protein (CP), crude fiber (CF) and crude ash (CA). All tests were done using the standardized methods with ISO 17025 [11] accreditation with guidance according to AOAC-2023 [12]. An amount of 10 g of the sample was dried in a hot air oven at 105°C until a stable weight was recorded, and the difference in the weight was recorded as moisture content. In case of ash content, 1g of sample was put in a preweighed porcelain crucible and ashed in an ashing furnace at 600°C until white ash formed and a stable weight was

recorded. It determined the crude protein content as a result of multiplying the nitrogen value by 6.25 after assessing the nitrogen content through the micro-Kjeldahl procedure. Moreover, the carbohydrate content was assessed according to the guidelines established by AOAC-2023. The carbohydrate content (expressed as a percentage on a wet basis) is calculated by deducting the total percentages of crude protein, crude fat, ash, and moisture content from 100. Carbohydrate % (wet basis) = 100-(% of crude protein + % of Crude fat + % ash content + % content of moisture). The incidence of aflatoxins in dog food was assessed using the thin-layer chromatographic method [13]. A 50g powdered sample was combined with 250ml of chloroform and shaken for 30 minutes. Subsequently, 50ml of the resulting solution was evaporated using a water bath. The volume was adjusted, and the sample was applied to a TLC plate as per the given procedure. Different concentrations of standards were utilized to compare against the sample extract for aflatoxin quantification (AOAC, 2023). The total aflatoxins (AFB1+AFB2+AFG1+AFG2) were calculated using the specific formula [14]. The formula for the detection of aflatoxin B1 is given below: Aflatoxin B1(g/kg) = $S \times Y \times V/W \times I$ Z. Where, S=volume in L of aflatoxin standard which is equivalent intensity to Z = L of the sample, Y=Concentration of aflatoxin standard in g/mL, V=Volume in L of solvents requisite to dilute final sample extract, Z =Volume in L of extracted sample requisite to confer fluorescence intensity similar to that of S=L of the aflatoxin standard and W=Effective weight (in grams) of original sample contained in final extract.

RESULTS

According to the nutrient content guiding principle for dry dog food, the recommendations include a minimum of 26% crude protein, at least 15% crude fat, a maximum of 5% crude fiber, approximately 37% carbohydrates, around 7% minerals, and no more than 10% moisture. Nutrient profile for dog food intended for growth and reproduction, it is suggested that adult dogs get a minimum of 18% protein and 5.5% fat on a dry matter basis (DMB), with a caloric density of 300 to 400 kilocalories of metabolizable energy (ME) per 100 grams of dry matter (DM) (Table 1).

Table 1: Proximate Assessment of Food for Pet Dog

Sr. No	Parameter (%)	Values
1	Moisture	7.00 ± 0.30
2	Ash	4.40 ± 0.09
3	Protein	20.64 ± 0.40
4	Fat	8.10 ± 0.50
5	Fibre	4.60 ± 0.20
6	Carbohydrates	55.26 ± 0.10
7	Energy (Kcal/ 100g)	376.50 ± 0.25

In this analysis, the product was checked for aflatoxin contamination and was found safe, as no contamination of aflatoxins was detected. This indicates that the dog food sample is safe for canine health (Table 2).

Table 2: Aflatoxin Assessment of Food for Dogs

Sr. No	Aflatoxins	Concentration (ppb)
1	B1	Not Detected
2	B2	Not Detected
3	G1	Not Detected
4	G2	Not Detected
5	Total Aflatoxins	Not Detected

DISCUSSION

The contemporary findings signify that the average levels of crude fat were found to be lacking, while crude protein, fiber and ash align closely with recommendations of AAFCO, 2014. Though, notably, dry dog food exhibited lower levels of crude protein according to the recommendation of Case et al. [15]. The moisture levels are less than 10% as per recommendations. The proximate analysis results showed that this dog food can be regarded as a high-calorie option, providing 376.50 ± 0.25 Kcal per 100g, to meet the dietary needs of dogs. The inadequate fat content in dry dog food may create a momentous threat, as fat serves as the main energy source and provides necessary fatty acids, while also being one of the most easily digestible nutrients. Additionally, fat enhances the palatability and quality of pet food. A considerable lack of fat in dry dog food may result in energy deficiencies, mostly for working dogs [16, 17]. Aflatoxins are harmful and cancer-causing fungal metabolites that can drastically impact food quality. The most prevalent aflatoxins include aflatoxin B1, B2, G1, and G2. The relation of aflatoxins with dietary lipids may lead to digestive issues, as it reduces the activity of digestive enzymes, resulting in a malabsorption syndrome [18]. The domestic dogs, similar to other household animals, are exposed to aflatoxin poisoning that may be found in their food, which poses a considerable threat to their health [19], while fatalities from aflatoxicosis are usually linked to extremely high concentrations of aflatoxin (ranging from 100 to 6700 ppb), there have also been instances of deaths occurring at lower levels of aflatoxin (between 13 and 91 ppb). In spite of the implemented protection protocols and protective measures designed to protect dog food components and ensure precise recipe preparation, incidents of food contamination by aflatoxins may lead to health issues and even fatalities among animals. Veterinarians play a crucial role in promptly identifying the negative health impacts linked to contaminated food products [20]. The well-timed communication with manufacturers and regulatory bodies, along with comprehensive documentation, sample collection, and analytical testing, will ease the validation or dismissal of

potential toxic exposure to aflatoxins.

CONCLUSIONS

The growing reliance on dogs for camaraderie and consolation is believed to be a key factor driving the noteworthy growth of the pet food sector, which in turn has led to a consequent increase in demand for dog food among pet owners and breeders. To our knowledge, the claims regarding nutritional sufficiency made by pet food companies in Pakistan have not been carefully verified. Providing dog food without accurate information regarding nutrient concentrations cannot satisfactorily meet a dog's nutritional requirements. It is suggested that manufacturers should accurately declare the nutrient concentrations in their dog food products and ensure the quality of pet food in terms of toxins. The pet dog food free of any contamination may ensure the well-being of pet dogs.

Authors Contribution

Conceptualization: NZ Methodology: SU, SN, AY Formal analysis: MKS, AS Writing review and editing: NZ

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- [1] Martínez-Martínez L, Valdivia-Flores AG, Guerrero-Barrera AL, Quezada-Tristán T, Rangel-Muñoz EJ, Ortiz-Martínez R. Toxic Effect of Aflatoxins in Dogs Fed Contaminated Commercial Dry Feed: A Review. Toxins.2021Jan; 13(1): 65. doi: 10.3390/toxins1301006 5.
- [2] Jacuńska W, Biel W, Zych K. Evaluation of the Nutritional Value of Insect-Based Complete Pet Foods. Applied Sciences. 2024 Nov; 14(22): 10258. doi: 10.3390/app142210258.
- [3] Kazimierska K, Biel W, Witkowicz R, Karakulska J, Stachurska X. Evaluation of Nutritional Value and Microbiological Safety in Commercial Dog Food. Veterinary Research Communications.2021Sep; 45(2):111-28.doi:10.1007/s11259-021-09791-6.
- [4] Signorini G, Biagi G, Nannipieri S, Marzotto G, Dilaghi D, Caggiati L. Regulation (EC) 767/2009: News Feed Generality. 2010.

- [5] Alvarenga IC, Ou Z, Thiele S, Alavi S, Aldrich CG. Effects of Milling Sorghum into Fractions on Yield, Nutrient Composition, and Their Performance in Extrusion of Dog Food. Journal of Cereal Science. 2018 Jul; 82: 121-8. doi: 10.1016/j.jcs.2018.05.013.
- [6] Meineri G, Peiretti PG, Tassone S, Candellone A, Longato E, Russo N et al. Nutritional Value of Extruded Dog Food with Mechanically Separated Chicken Meat or Meat By-Products. Preprints.2019 Jan. doi: 10.20944/preprints201901.0189.v1.
- [7] Silva J, Pereira MN, Scussel VM. Ozone Gas Antifungal Effect on Extruded Dog Food Contaminated with Aspergillus Flavus. Ozone: Science and Engineering. 2018Nov;40(6):487-93.doi:10.1080/01919512.2018.14 81361.
- [8] Gazzotti T, Biagi G, Pagliuca G, Pinna C, Scardilli M, Grandi M, Zaghini G. Occurrence of Mycotoxins in Extruded Commercial Dog Food. Animal Feed Science and Technology.2015 Apr; 202: 81-9. doi: 10 .1016/j.anifeedsci.2015.02.004.
- [9] Peito A and Venâncio A. An Overview of Mycotoxins and Toxigenic Fungi in Portugal. An Overview on Toxigenic Fungi and Mycotoxins in Europe.2004: 173-84. doi: 10.1007/978-1-4020-2646-1_12.
- [10] Gyenfie JA. Determination and Analysis of Aflatoxins in Commercial Dog Foods on the Ghanaian Market (Doctoral Dissertation, University of Education Winneba). 2023.
- [11] ISO/IEC 17025. General Requirements for the Competence of Testing and Calibration Laboratories. 2017
- [12] AOAC. Official Methods of Analysis: 22nd Edition. Association of Official Analytical Chemists. 2023.
- [13] Zahra N, Firdous S, Ejaz N, Hina S. Detection of Aflatoxins in Various Samples of Red Chilli: Aflatoxins in Red Chilli. Biological Sciences-Pakistan Journal of Scientific and Industrial Research. 2012 Oct; 55(1): 27-9. doi: 10.52763/PJSIR.BIOL.SCI.55.1.2012.27.29.
- [14] Zahra N, Abidi SH, Saeed MK. Development and Quality Evaluation of Nutritious and Healthy Biscuits for Dogs. Lahore Garrison University Journal of Life Sciences.2021 Jul; 5(3): 164-70. doi: 10.54692/lgujls. 2021.0503174.
- [15] Case LP, Daristotle L, Hayek MG, Raasch MF. Canine and Feline Nutrition: A Resource for Companion Animal Professionals. Elsevier Health Sciences. 2010 May.
- [16] Rolinec M, Bíro D, Gálik B, Šimko M, Juráček M, Tvarožková K *et al.* The Nutritive Value of Selected Commercial Dry Dog Foods. Acta Fytotechnica et Zootechnica.2016Mar;19(1):25-8.doi:10.15414/afz. 2016.19.01.25-28.

- [17] Píšová A, Gálik B, Juráček M, Bíro D, Šimko M, Rolinec M et al. Apparent in Vivo Nutrient Digestibility of Maize Silages in Horses. Journal of Central European Agriculture. 2016 Dec; 17(4). doi: 10.5513/JCEA01/17.4.1848.
- [18] Gimeno A. Aflatoxicosis en Humanos Provocada por el Consumo de Alimentos Contaminados, que no son de Origen Animal [Internet]. 2007.
- [19] Valladares-Carranza B, Felipe-Pérez YE, Sánchez-Torres JE, Caballero-Reyna M, Zaragozabastida A, Rivero-Pérez N, Velazquez-Ordoñez V et al. Aflatoxins Determination in Commercial Dog Food. Zootenicia Brasil. 2018.
- [20] Stenske KA, Smith JR, Newman SJ, Newman LB, Kirk CA. Aflatoxicosis in Dogs and Dealing with Suspected Contaminated Commercial Foods. Journal of the American Veterinary Medical Association. 2006 Jun; 228(11): 1686-91. doi: 10.2460/javma.228.11.1686.

DIET FACTOR

Journal of Nutritional & Food Sciences

https://www.dietfactor.com.pk/index.php/df ISSN (E): 2789-8105, (P): 2789-8091 Volume 6, Issue 3 (July-Sep 2025)

Original Article

Nutritional, Antioxidative and Aflatoxin Safety Assessment of Ginger-Turmeric Tea: A Functional Herbal Beverage Tea

Muhammad Khalid Saeed¹, Naseem Zahra^{2*}, Hafiza Kainat Anwar³, Shaheena Anjum⁴, Amara Khan⁵, Asthma Saeed⁶ and Sadaf Javeria³

Food Additive and Contaminant Labs, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan

ARTICLE INFO

Keywords:

Ginger, Turmeric, Herbal Tea, Nutritional Facts, Aflatoxin, Antioxidant Activity

How to Cite:

Saeed, M. K., Zahra, N., Anwar, H. K., Anjum, S., Khan, A., Saeed, A., & Javeria, S. Nutritional, Antioxidative and Aflatoxin Safety Assessment of Ginger-Turmeric Tea: A Functional Herbal Beverage Tea: Antioxidative and Aflatoxin Safety Assessment of Ginger-Turmeric Tea. DIET FACTOR (Journal of Nutritional and Food Sciences), 6(3), 06-11. https://doi.org/10.54393/df.v6i3.176

*Corresponding Author:

Naseem Zahra

College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan drnaseemzahra@gmail.com

Received Date: 1st July, 2025 Revised Date: 16th August, 2025 Acceptance Date: 22nd August, 2025 Published Date: 30th September, 2025

ABSTRACT

Turmeric and ginger belong to the family Zingiberaceae, which contains bioactive chemicals with a variety of uses. Ginger (Zingiber officinale) has several bioactive components, such as gingerols, zingiberene, caffeic acid, salicylate and capsaicin. It is utilized in a wide range of food and beverages. Turmeric (Curcuma longa) contains numerous physiologically active substances, including Curcumin, dimethoxycurcumin and bis-demethoxycurcumin. Both ginger and turmeric have been used to treat nausea, indigestion, stomachaches, toothaches, insomnia, asthma, diabetes, infertility, neurological issues, rheumatism and memory loss. Apart from water, tea is the most popular beverage in the world. Objectives: To develop gingerturmeric tea and assess of nutritional facts, aflatoxin and antioxidant potential. Methods: The nutritional facts and aflatoxin were determined by standard AOAC methods, and the antioxidant activity of the ginger-turmeric tea was evaluated by DPPH assay. Results: The results of this study revealed that ginger-turmeric tea has $7.5 \pm 0.84\%$ moisture, 5.12 ± 0.65 ash, $0.22 \pm 0.01\%$ fat, $14.75 \pm 1.67\%$ fiber, $8.10 \pm 0.82\%$ protein, carbohydrates 64.25 ± 3.90 , and energy 292 ± 5.30 kcal/100g, while the results of aflatoxin study showed that aflatoxins (B1, B2, G1 and G2) were absent. The significant antioxidant capacity DPPH (% inhibition) was found to range from 25.50 \pm 1.20-74.80 ± 2.77% at concentrations of 0.2-1.0 mg/mL, significant differences in various concentrations p<0.05 were found. Conclusions: This study concluded that the developed ginger-turmeric tea is a good source of protein, fiber and has a high content of natural antioxidants, making it advantageous for treating oxidative stress.

INTRODUCTION

Herbs and spices have long been used to improve the flavor of food and are also used medicinally to cure a variety of illnesses in many civilizations worldwide. Polyphenols and flavonoids are abundant in many plants used in traditional medicine, and these compounds represent a significant source of phytochemicals for both human and animal

health [1]. Most spices have a variety of possible health benefits, including positive effects on lipid metabolism, anti-diabetic effects, stomach-stimulating properties and probable anti-inflammatory and antioxidant properties [2]. Ginger, often known as ginger root, is the rhizome of the Zingiber officinale and is used as a spice, medicinal or

²College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan

³Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan

⁴Department of Chemistry, Riphah International University, Faisalabad, Pakistan

⁵Institute of Food Science and Nutrition, Gomal University, Dera Ismail Khan, Pakistan

⁶Head Food Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan

delicacy. Ginger contains chemical compounds, especially gingerol and shogaol, which are thought to have functions as anti-cancer, anti-inflammatory, anti-hypertensive, antidiabetic, anti-hyperlipidemic and antioxidant [3]. The Zingiberacea family includes the rhizomatous herbaceous perennial plant known as turmeric. Turmeric has been shown to contain around 250 phytochemicals, mostly terpenoids and phenolic compounds including curcumins, turmerone, a-zingiberene, carotene, syringic, p-coumaric, ascorbic acid, ferulic acid, nd vanillic acid [4]. Curcumin is its active element that has garnered attention due to its potential to treat a wide range of disorders, such as diabetes, cancer, Alzheimer's disease, allergies, arthritis, and other chronic conditions [5]. Following harvest, both ginger and turmeric are dried and kept in extremely unsanitary circumstances, which increases the risk of mycotoxins and aflatoxins. Aflatoxins are fungal metabolites mostly produced by the Aspergillus flavus and Aspergillus parasiticus species. AFB1 is the most poisonous of the four main aflatoxins, which are AFB1, AFB2, AFG1, and AFG2. Hepatocellular cancer, acute aflatoxicosis, immunological suppression, malnourishment and growth deficits are all associated with AFB1 [6]. Numerous preharvest and post-harvest factors, such as agronomic and agricultural practices, transportation, storage and processing techniques, can result in aflatoxin contamination along the supply chain. As a result, aflatoxins should not be present in the raw material. The medicinal qualities of plants have been thoroughly investigated in the current scientific environment due to their strong antioxidant qualities, lack of side effects and viability from an economic standpoint. With a large percentage of the world's population depending on herbal medicines, herbal therapy is essential to maintaining human health and prosperity [7]. Furthermore, the usage of natural elements produced from plants has been essential since the start of the global COVID-19 epidemic. As a result, the COVID-19 pandemic has brought attention to the necessity of natural antioxidants that improve immunity, improve human health and possibly even stop oxidative stress[8].

This study aims to develop the ginger-turmeric tea and assessment of its nutritional facts, aflatoxin and antioxidant activity.

METHODS

This experimental study was conducted in March-May 2025 at the Food and Biotechnology Research Centre, PCSIR, Labs complex, Lahore. Before being utilized, the raw materials green tea (Camellia sinensis), ginger (Zingiber officinale), and turmeric were collected from the local

market in Lahore, Pakistan and kept at room temperature $(25 \pm 2^{\circ}C)$. After washing, chopping and three hours of oven drying at 70°C, the three materials were blended until a consistent powder was obtained. After that tea was prepared by properly combining these ingredients with a small cardamom and filling it in a tea bag. The gingerturmeric tea was prepared by immersing the tea bag in hot water. 50g of the ground raw samples and the developed tea were added to 500mL of the conical flask. Add 200 mL of dichloromethane and 10 mL of water, respectively and shake it a half-hour using a shaker. In a 300 mL glass flask containing 10g of Na₂SO₄, the mixture was filtered via filter paper. After letting the contents settle gently, the solution was re-filtered into a 100 mL beaker using Whatman filter paper. On TLC plates, samples were spotted. Before being used for analysis, the TLC plates, which included a coated gel of silica on a glass plate, were activated in a hot air oven for an hour at 80°C. After drying, this plate was placed in a diethyl ether-containing TLC tank (first mobile phase) and then, for 30 minutes, it was placed in a second mobile phase tank that contained acetone and chloroform in an 88:12 (v/v) ratio. Blue fluorescence under UV light after plate development verified the presence of aflatoxin, which was then compared to standard AFB1(2µg/ml), B2(0.508µg/ml), G1 (2.01µg/ml) and G2 (0.515µg/ml) Biopure Romar Lab Austria (Product-10003656; Lot: 1000046444). The spray of aqueous sulphuric acid (50/50 v/v) was done on the TLC plate for the confirmation of aflatoxins presence [9]. The aflatoxins were determined by using a formula. Total $aflatoxins(\mu g/Kg)=S\times Y\times V/W\times Z$

Where:

S = volume of aflatoxins standard in μ L of equivalent intensity to Z(μ L of sample).

 $Y = aflatoxins standardconcentration in \mu g/mL$.

 $V = volume of solvents in \mu L required to dilute final extract.$

W = weight of original sample in g contained in final extract.

Z = volume of sampleextract (μ L) require to give fluorescence intensity comparable to that of S. Fs total = concentration of AFB1+AFB2+AFG1+AFG2.

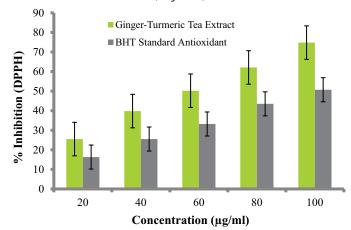
Nutritional profile (moisture, ash, fat, crude fiber, crude protein and carbohydrate contents were determined for raw ginger, turmeric and tea samples developed by AOAC standard methods [10]. By immersing a 1.5g tea sachet sample in 100ml of boiling water, the tea sample's aqueous extract was produced. These were left for one to two minutes. Additionally, their level of antioxidant activity was evaluated as well. The approach adapted by Saeed et al. was used to test the extracts' scavenging capabilities on the stable free radical DPPH[11]. 2.9 mL of methanolic 2,2-diphenylpicrylhydrazyl radical scavenging capability (DPPH) solution was combined with 0.1 mL of tea water extract. Each sample was incubated in the dark for 30

minutes, and its absorbance at 517 nm was compared to a blank. By measuring the sample's and standard BHT absorbance and using the following formula, the proportion of percentage inhibition (DPPH) was determined: Percentage inhibition(DPPH)=[1-(As/A0)]×100. Where A0 represents the absorbance of the DPPH solution, and as represents the absorbance of the samples. The results were statistically analyzed using SPSS Minitab software version 25. Data were represented as mean \pm SD, and analysis of variance (ANOVA) was performed. Statistical significance was defined at p<0.05.

RESULTS

The moisture, ash, fat, fiber, protein, carbohydrate contents and energy of ginger, turmeric and gingerturmeric tea were determined by AOAC standard methods. According to this study, turmeric had the highest moisture content (13.20%), followed by ginger (10.60%) and gingerturmeric tea (7.50%). Turmeric had the lowest amount of ash (3.10%), followed by developed tea (5.12%) and ginger (5.80%). Turmeric had the highest lipid content (4.70%), followed by ginger (3.70%) and developed tea (0.22%). According to the fiber analysis, developed tea had the highest fiber content (14.75%), followed by ginger (13.50%), and turmeric had the lowest (2.78%). The highest protein level was found in ginger (8.90%), followed by developed tea (8.10%) and turmeric (5.85%). Ginger had carbohydrate content (57.50%), while developed tea (64.25%) and turmeric had the highest (68.37%). Turmeric has the maximum energy 343 ± 5.80Kcal/100g, followed by ginger 299 ± 5.38 Kcal/100g and developed tea 292 ± 5.30 Kcal/100g (Table 1).

Table 1: Nutrition Information of Raw Material and Ginger-Turmeric Tea


Parameters	Ginger	Turmeric	Ginger-turmeric Tea
Moisture	10.60 ± 1.44	13.20 ± 1.56	7.50 ± 0.84
Ash	5.80 ± 0.69	3.10 ± 0.40	5.12 ± 0.65
Fat	3.70 ± 0.43	4.70 ± 0.50	0.22 ± 0.01
Fiber	13.50 ± 1.61	2.78 ± 0.67	14.75 ± 1.67
Protein	8.90 ± 0.84	5.85 ± 0.56	8.10 ± 0.82
Carbohydrates	57.50 ± 3.80	68.37 ± 3.98	64.25 ± 3.90
Energy (Kcal/100g)	299 ± 5.38	343 ± 5.80	292 ± 5.30

Aflatoxin was measured in this study using thin-layer chromatography (TLC), and the findings indicated that all samples of raw ginger, turmeric, and developed ginger-turmeric tea were free from aflatoxins. All the samples are fit for human consumption according to the EU limit (2023), i.e. 5-10 ppb for ginger and turmeric, while it is 0-20 ppb for developed tea (Table 2).

Table 2: Determination of Aflatoxin Contamination in Raw Ingredients and Ginger-Turmeric Tea

Samples	Aflatoxins (ppb) B1, B2, G1 and G2	Total Aflatoxins	Fit/ Unfit	EU Limit (2023)
Raw Material Ginger Powder	Not Detected	Not Detected	Fit	5-10 ppb
Raw Material Turmeric Powder	Not Detected	Not Detected	Fit	5-10 ppb
Raw Material Green Tea	Not Detected	Not Detected	Fit	0-20 ppb
Ginger-turmeric Tea	Not Detected	Not Detected	Fit	0-20 ppb

Five distinct concentrations, ranging from 0.2 to 1.0 mg/ml, were employed to assess the antioxidant activities of the developed ginger-turmeric tea. After 30 minutes, measurements were made. The findings show that the % inhibition (DPPH), ranging from 25.50 ± 1.20 to 74.80 ± 2.77 , increased with increasing concentration based on the ANOVA test. it concluded that the antioxidant activity of the developed tea was significantly different at different concentrations (p<0.05). The highest free radical scavenging activity was seen at a concentration of 1 mg/ml; however, all tea extracts demonstrated a notable capacity to eliminate free radicals (Figure 1).

Figure 1: Antioxidant Activity % Inhibition (DPPH) Ginger-Turmeric Tea and BHT

DISCUSSION

According to reports, dried ginger has the following contents: 7.0–10.90% moisture, 8.50–12.4% protein, 70–72% carbohydrate, 5.70–6.64% ash, 7.17–14.1% fiber, and 1.8–4.0% fat. While the turmeric's overall composition is between 11 and 13% moisture, 6 to 9% protein, 5 to 10% fat, 60 to 70% total carbohydrates, 3 to 7% ash and 2 to 7% fiber [12]. The 8.85% crude protein content of ginger-turmeric tea suggests that it may be a useful source of protein. Turmeric's 5.12% ash percentage indicates that it has a respectable amount of minerals. By eliminating possible carcinogens from the body and preventing the absorption of excess cholesterol, the fiber (14.75%) in the developed product will aid in cleansing the consumer's digestive tract. Additionally, fiber gives meals volume and

keeps people from consuming too many starchy foods, which may protect against metabolic diseases, including diabetes mellitus and hypercholesterolemia [13]. The developed product has 64.25% carbohydrate content, according to the current investigation. It has a high calorie value and was suggested by the high carbohydrate content [14]. The Food and Agriculture Organization (FAO) estimates that mycotoxins contaminate about 25% of the world's food crop supply each year, with aflatoxins being the most dangerous [15]. It is concerning to note that over 5 billion individuals globally are regularly exposed to elevated quantities of aflatoxin, surpassing 1000 parts per billion (ppb)[16]. More than 100 countries and regions have put in place unique aflatoxin threshold requirements for different food products in order to guarantee food safety. In this regard, the European Union (EU) has imposed comparatively strict regulations. They specifically state that the overall amounts of aflatoxins (AFB1, AFB2, AFG1 and AFG2) in all cereals should not be more than 4 ppb, while the values for spices should be between 5 and 10 ppb and for raw green tea powder, 20 ppb [17]. Aflatoxins are a major contributor to the formation of primary hepatocellular carcinoma, a form of malignant liver tumor and can seriously harm the liver. According to studies, aflatoxins are responsible for over half of the risk of liver cancer in Asia and Africa [18, 19]. Both our novel tea and its raw material are safe for human consumption and free of aflatoxins. The sample's ability to scavenge 2,2-diphenyl-1picrylhydrazyl (DPPH) is a gauge of its antioxidant capacity. In the presence of oxidants, DPPH is reduced and loses its purple-blue blue when it takes an electron provided by an antioxidant component, which can be measured by changes in absorbance [20]. Because ginger, a raw ingredient in ginger-turmeric tea, includes non-nutritional chemicals with antioxidant qualities, it helps strengthen the body's immune system. Mahmudati et al. investigated the antioxidant activity of three different types of ginger and depicted that red ginger had the maximum antioxidant activity by the infusion method, 79.83%, followed by elephant 70.43% and emprit ginger 61.70%, respectively [3]. On the other hand, the decoction of elephant ginger showed the highest antioxidant activity, 78.76%, followed by red ginger, 70.56% and elephant ginger, 60.93%. According to Priyanka et al. who examined the antioxidant activities of different varieties of turmeric, other ingredients of this tea also have significant antioxidant activity [20]. They showed that the Prathibha variety's higher antioxidant activity might be caused by a higher percentage of phenolics, flavonoids, curcuminoids and natural antioxidants. Antioxidants found in ginger help prevent free radicals from harming the body's immune system cells by preventing their entry. Additionally, antioxidants help to boost immuno-stimulatory activity, and cells help to maximize the immune system, and turmeric is less immune-stimulating than ginger [20]. To preserve the body's immune system, ginger can have a therapeutic effect by boosting DNA repair, increasing antioxidants, and reducing lipid peroxidation [21]. Green tea (Camellia sinensis), a popular beverage high in polyphenols, was the third component of this innovative tea. Studies showing green tea's anti-carcinogenic, antimicrobial, antiviral, anti-hypercholesterolemic, antiobesity, anti-inflammatory and antioxidant qualities have stoked interest in the beverage over time. Green tea's high catechin content, which makes up between 15 and 27% of the dry weight of the leaves, is thought to be responsible for its health benefits [22]. The inclusion of phytochemicals such as catechins, flavonoids, polyphenols, and tannins may be the cause of the developed novel tea's high level of antioxidant activity. The substantial antioxidant qualities of several plant-derived substances, including tannins, flavonoids, terpenoids, glycosides, alkaloids, and phenols, have also been demonstrated by earlier research [23]. As far as there isn't a tea like this in this combination, and it's a novel teathat was developed first time in Pakistan.

CONCLUSIONS

According to the findings of this study, a new gingerturmeric tea has been developed that offers natural antioxidants in addition to two essential nutrients fiber and protein. Moreover, developed tea contains numerous bioactive compounds that can be utilized to prevent or cure a variety of human health conditions, including diabetes, inflammation, oxidative stress, immune system diseases and neurological disorders.

Authors Contribution

Conceptualization: MKS Methodology: MKS, SA Formal analysis: HKA, AK, SJ Writing review and editing: NZ, AS

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

Garg SK, Shukla A, Choudhury S. Polyphenols and Flavonoids. In Nutraceuticals in Veterinary Medicine. Cham: Springer International Publishing. 2019 May: 187-204. doi: 10.1007/978-3-030-04624-8_13.

- [2] Onyegbula AF, Ahmed T, Olorunfemi AP, Lawal IO, Akande EJ. Research Article Comparative Studies of Antioxidant Activity and Profile of Some Spices. International Journal of Agricultural and Applied Sciences.2024June;5(1):1-5.doi:10.52804/ijaas2024.511.
- [3] Mahmudati N, Nurdiana H, Wahyono P. Antioxidant Activity and Phenolic Content of Ginger (Zingiber Officinale Roscoe) Combination with Cinnamon (Cinnamomum Burmanii) and Sappan Wood (Caesalpinia Sappan) as an Anti-Diabetic. GSC Biological and Pharmaceutical Sciences.2022; 20(3): 001-5. doi: 10.30574/gscbps.2022.20.3.0336.
- [4] de Oliveira Filho JG, de Almeida MJ, Sousa TL, dos Santos DC, Egea MB. Bioactive Compounds of Turmeric (Curcuma Longa L.). In Bioactive Compounds in Underutilized Vegetables and Legumes. Cham: Springer International Publishing. 2021Jul:297-318.doi:10.1007/978-3-030-57415-4_37.
- [5] Jiang T, Ghosh R, Charcosset C. Extraction, Purification and Applications of Curcumin from Plant Materials-A Comprehensive Review. Trends in Food Science and Technology.2021Jun1;112:419-30.doi: 10.1016/j.tifs.2021.04.015.
- [6] Tanveer H, Glesener H, Su B, Bolsinger B, Krajmalnik-Brown R, Voth-Gaeddert LE. Evaluating Methods for Aflatoxin B1 Monitoring in Selected Food Crops within Decentralized Agricultural Systems. Toxins. 2025 Jan; 17(1): 37. doi: 10.3390/toxins17010037.
- [7] Al Naqbi K, Manoharan R, Nair CS, Kandhan K, Alyafei M, Jaleel A. Exploring The Antioxidant Potential of Medicinal Plants in the United Arab Emirates (UAE): Emphasizing Their Significance in Novel Drug Development. Pharmacy Practice. 2025 Feb; 23(1): 1-1. doi: 10.18549/PharmPract.2025.1.3113.
- [8] Heriansyah P, Aziz SA, Sukma D, Nurcholis W. Antioxidant Capacity of Coelogyne Pandurata Extracts at Different Phenological Phases. Revista Brasileira de Engenharia Agrícola e Ambiental. 2024 Nov;29(02):e279352.doi:10.1590/1807-1929/agriambi.v29n2e279352.
- [9] Zahra N, Tanveer R, Zaheer M, Moosa H, Saeeed MK, Shahzad K et al. Aflatoxin Types, Permissible level, Factors Responsible for Aflatoxin Contamination, Determination and Detoxification Methods in Animal Feed. Chemical Science and Engineering Research. 2021Nov;3(8).doi:10.36686/Ariviyal.CSER.2021.03 .08.040.
- [10] Agroindustriais P. AOAC. Official methods of analysis of the Association of Official Analytical Chemists. Caracterização, Propagação E Melhoramento Genético De Pitaya Comercial E Nativa Do Cerrado.

- 2013 Mar; 26(74): 62.
- [11] Saeed MK, Zahra N, Saeed A, Babar L, Malik M, Shehbaz M et al. Isolation and Quantification of Anthocyanins from Red Cabbage (Brassica Oleracea L.) and Its Potential Uses as Antioxidant in Natural Food. ACTA Pharmaceutica Sciencia. 2024;62(4). doi: 10.23893/1307-2080. APS6259.
- [12] Charles DJ. Antioxidant Properties of Spices, Herbs and Other Sources. Springer Science and Business Media. 2012 Nov.
- [13] Singh J, Nigar I, Kumar D, Sharma S, Kumar H, Rani D et al. Health Benefits of Ginger: A Review. Review. Journal of Ayurvedic and Herbal Medicine.2024; 10(2): 49-55.
- [14] Shehu A, Shehu A, Umar A, Yahaya BU, Mustapha I. Proximate and Phytochemical Analysis of Some Selected Spices; Garlic (Allium Sativum), Ginger (Zingiber Officinale) and Onion (Allium Cepa). International Journal of Botany and Horticulture Research.2023;1:115-24.doi:10.33140/IJBHR.01.01. 14.
- [15] Xiao HW and Mujumdar AS. Importance of Drying in Support of Human Welfare. Drying Technology.2020 Aug;38(12):1542-3.doi:10.1080/07373937.2019.168 6476.
- [16] Saeed MK, Anjum S, Zahra N, Shahzadi I, Huma Z, Khan A, ur Rehman K. Determination of Aflatoxin in Various Spices Samples and Its Detoxification Using Black Seed Oil: A Biological Approach: Using Black Seed Oil for Detoxification of Aflatoxins. Diet Factor (Journal of Nutritional and Food Sciences).2024 Jun: 24-9. doi: 10.54393/df.v5i2.134.
- [17] Peng H, Chang Y, Baker RC, Zhang G. Interference of Mycotoxin Binders with ELISA, HPLC and LC-MS/MS Analysis of Aflatoxins in Maize and Maize Gluten. Food Additives and Contaminants: Part A.2020 Mar; 37(3): 496-506. doi: 10.1080/19440049.2019.1701717.
- [18] Mungamuri SK and Mavuduru VA. Role of Epigenetic Alterations in Aflatoxin-Induced Hepatocellular Carcinoma. Liver Cancer International. 20200ct;1(2): 41–50. doi: 10.1002/lci2.20.
- [19] Akhtar MF, Zhang Y, Umar M, Xinru S, Ahmad E, Ma Q et al. Reducing Aflatoxins (Aspergillus Flavus) in Food and Animal Feed by Physical Methods and Chemical Degradation: An Update. Journal of Animal and Feed Sciences.2025 Apr; 34(2): 161-78. doi: 10.22358/jafs/194729/2025.
- [20] Priyanka R, Vasundhara M, Rao GG, Thara BS, Radhika B, Marappa N. Antioxidant Activity of Turmeric (Curcuma Longa L.) Cultivars. Medicinal Plants-International Journal of Phytomedicines and Related Industries.2017; 9(3): 189-94. doi: 10.5958/0975-6892

- .2017.00029.6.
- [21] Srinivasan K. Ginger rhizomes (Zingiber officinale): A Spice with Multiple Health Beneficial Potentials. Pharma Nutrition.2017Mar;5(1):18-28.doi:10.1016/j. phanu.2017.01.001.
- [22] Subroto E, Indiarto R, Selly A. Ginger rhizomes (Zingiber officinale) Functionality in Food and Health Perspective: A Review. Food Research (Malaysia). 2021: 497-505. doi: 10.26656/fr.2017.5(1).361.
- [23] Nain CW, Mignolet E, Herent MF, Quetin-Leclercq J, Debier C, Page MM et al. The Catechins Profile of Green Tea Extracts Affects the Antioxidant Activity and Degradation of Catechins in DHA-Rich Oil. Antioxidants.2022Sep;11(9):1844.doi:10.3390/antiox 11091844.

DIET FACTOR

Journal of Nutritional & Food Sciences

https://www.dietfactor.com.pk/index.php/df ISSN (E): 2789-8105, (P): 2789-8091 Volume 6, Issue 3 (July-Sep 2025)

Original Article

The Rising Trend of Energy Drink Consumption among University Students: A Hidden Health Risk

Irzah Farooq^{*} and Manahl Imran²

¹Department of Public Health, University of Punjab, Lahore, Pakistan

ARTICLE INFO

Keywords:

Energy Drinks, University Students, Caffeine, Sleep Disturbance, Academic Stress, Adolescent Health

How to Cite:

Farooq, I., & Imran, M. (2025). The Rising Trend of Energy Drink Consumption among University Students: A Hidden Health Risk: Rising Trend Energy Drink Consumption among University Students. DIET FACTOR (Journal of Nutritional and Food Sciences), 6(3), 12-17. https://doi.org/10.54393/df.v6i3.181

*Corresponding Author:

Irzah Farooq Department of Public Health, University of Punjab, Lahore, Pakistan irzahfarooq@gmail.com

Received Date: 24th July, 2025 Revised Date: 19th September, 2025 Acceptance Date: 26th September, 2025 Published Date: 30th September, 2025

ABSTRACT

Energy drinks, highly caffeinated beverages marketed to combat fatigue, are a global public health concern due to their association with adverse effects like insomnia and cardiovascular symptoms, particularly among young adults. Objective: To determine the prevalence, predictors, and self-reported health effects of energy drink consumption among university students in Pakistan. Methods: A cross-sectional online survey was conducted among 460 students at the University of the Punjab, Lahore. Data on consumption patterns, knowledge, and health effects were collected. First, bivariate analyses were performed to identify factors associated with frequent energy drink use. Subsequently, multivariable logistic regression was used to identify predictors of frequent energy drink use (≥3 times/week). The AOR from this test quantifies the strength of association between a predictor and the outcome, after controlling for the influence of other variables in the model. **Results:** The prevalence of current energy drink use was 175 (38.0%), with 22.9% of users classified as frequent consumers. Common consumption triggers were exam preparation (65.1%) and late-night studying (52.0%). Notably, 44.6% of users reported adverse effects, primarily insomnia (29.7%) and anxiety/jitters (18.2%). Knowledge about safe caffeine limits was low (28.5%). Significant predictors of frequent use included male gender (AOR=1.9; 95% CI: 1.1-3.3), residing in a university hostel (AOR=2.4; 95% CI: 1.4-4.2), and part-time employment (AOR=1.7; 95% CI: 1.0-2.9). Conclusions: The findings highlight an urgent need for targeted university-level health promotion interventions to educate students, particularly those in high-risk groups, about the potential dangers of energy drinks and to promote healthier alternatives for managing academic stress.

INTRODUCTION

The consumption of energy drinks has become increasingly popular among young adults, particularly university students, over the past two decades. Marketed as beverages that enhance alertness, concentration, and physical performance, these products are widely accessible and heavily promoted through targeted advertising campaigns. Their use is often linked to coping with academic stress, late-night study routines, and social pressures that characterize student life [1]. Globally,

research has raised concerns about the health risks of frequent energy drink consumption. Studies have shown that the high caffeine and sugar content in these beverages is associated with adverse effects, including insomnia, elevated blood pressure, obesity, dental caries, and an increased risk of cardiovascular complications [2, 3]. Furthermore, mixing energy drinks with alcohol, a common practice among students, has been linked to impaired judgment and engagement in risky behaviors [4]. Despite

²College of Statistics Sciences, University of Punjab, Lahore, Pakistan

these documented risks, awareness about safe consumption limits remains low among young populations [1]. In South Asian countries, including Pakistan, energy drink consumption among university students is an emerging trend, yet the body of scientific literature remains limited. Existing studies highlight that students often use these beverages to combat academic fatigue and enhance performance, but few investigations have explored the extent of this habit, its determinants, and its potential health implications in local contexts [5].

This study aims to assess the prevalence of energy drink consumption among university students in Pakistan, identify the sociodemographic and academic factors that influence their use, and examine students' knowledge and perceptions regarding the associated potential health risks.

METHODS

This cross-sectional study utilized a web-based survey conducted at the University of the Punjab, Lahore, from October 2023 to January 2024. A convenience sampling method was employed, with eligibility restricted to students aged 18 years or older enrolled in undergraduate or postgraduate programs. The minimum sample size was calculated to be 384, but a target of 500 was set to account for subgroup analyses. Participation was voluntary and confidential, and no personal identifiers were collected. The questionnaire, which was available in both English and Urdu after a rigorous translation process, was piloted with 30 students. The data from this pilot phase were used solely to refine the instrument and were not included in the final analysis. Frequent consumption was defined as an intake of four or more standard servings per week. This threshold was selected to identify the upper tier of consumers and was consistent with cut-offs used in prior public health research to classify high or habitual caffeine intake, which was associated with increased risk of adverse effects. It covered sociodemographic characteristics, consumption behaviors, knowledge, and self-reported health outcomes. Data collection involved measuring both the frequency and volume of energy drink consumption. "Frequent consumption" was defined as an intake of four or more standard servings per week, a threshold derived by multiplying the average volume per occasion by a habitual frequency cut-off. The minimum sample size was calculated using Cochran's formula for cross-sectional studies: $n = Z^2P(1-P)/d^2$. The assumptions were a 95% confidence level (Z = 1.96), an expected prevalence (P) of 50% (0.5) to maximize the sample size due to the lack of prior precise estimates in the local population, and a margin of error (d) of 5% (0.05). This calculation yielded a minimum sample size of 384. A target

sample size of 500 was set to account for potential incomplete responses and to ensure sufficient power for subgroup analyses. Written informed consent was taken. The original English questionnaire underwent a rigorous process of forward and back translation to ensure conceptual equivalence in Urdu. First, two independent bilingual translators produced two Urdu versions (T1 and T2), which were synthesized into a single version. This version was then back-translated into English by two other translators, who were blinded to the original instrument. The research committee compared the back-translated versions with the original to identify and resolve any discrepancies in meaning. For cultural adaptation, a panel of experts (including a nutritionist, a public health specialist, and a linguist) assessed the content validity of the Urdu version, evaluating the relevance and clarity of each item. The Content Validity Index (CVI) was calculated, and items with a CVI below 0.78 were revised. Finally, the pre-final Urdu version was pilot-tested on 30 students to assess face validity, comprehensibility, and contextual appropriateness (e.g., ensuring local names for energy drinks were used). Minor adjustments to wording were made based on pilot feedback. The data from this pilot phase were used solely to refine the instrument and were not included in the final analysis. Data analysis was performed using IBM SPSS Statistics version 27. Descriptive statistics summarized the data, and bivariate analyses (Chi-square and t-tests) identified factors associated with frequent use. For the continuous variable (age), the use of parametric tests (t-test) was deemed appropriate given the large sample size (n=460) and the robustness of the t-test to minor deviations from normality, as supported by the Central Limit Theorem. Variables with a p-value<0.10 were included in a final multivariable logistic regression model to identify independent predictors, with a p-value<0.05 considered significant. Measures to mitigate bias included emphasizing anonymity and using validated survey items.

RESULTS

The study cohort comprised 460 university students with a mean age of 21.4 years, reflecting a typical undergraduate population. The sample was predominantly composed of undergraduates (84.8%) and was nearly evenly split by sex, with a slight majority of females (52.6%). A key characteristic of the sample is that nearly half of the participants (47.0%) resided in university hostels, a factor often associated with independent lifestyle choices and increased exposure to peer influences (Table 1).

Table 1: Sociodemographic Characteristics of the Study Participants(n=460)

Characteristic	Category	Mean ± SD, n (%)
Age	Years	21.4 ± 2.1
	Male	218 (47.4%)
Sex	Female	242 (52.6%)
	_	460 (100.0%)
	Undergraduate	390 (84.8%)
Academic Level	Postgraduate	70 (15.2%)
	_	460 (100.0%)
Residential	Hostel	216 (47.0%)
Status	With Family	205 (44.6%)

	Other	39 (8.4%
	_	460 (100.0%
Part-Time Employment	Yes	98 (21.3%)
	No	362 (78.7%)
	-	460 (100.0%)

The bivariate analysis revealed that male students and those residing in university hostels had significantly higher odds of being frequent energy drink users, with crude odds ratios of 2.83 and 2.26, respectively. A positive, though not statistically significant, association was observed for part-time employment. No significant associations were found for age or academic level (Table 2).

Table 2: Bivariate Associations Between Sociodemographic Factors and Frequent Energy Drink Use (≥4 Servings/Week)

Variables	Category	Frequent Users (n=40)	Non-Frequent Users (n=420)	Crude Odds Ratio (COR)	95% CI	p-Value
	Categorical, n (%)					
Sex	Male	28 (70.0%)	190 (45.2)	2.83	1.40 - 5.73	0.007
Sex	Female	12 (30.0%)	230 (54.8%)	2.83		0.003
Residential	Hostel	26 (65.0%)	190 (45.2%)	2.26	1.18 - 4.35	0.014
Status	Status With Family/Other	14 (35.0%)	230 (54.8%)	2.20		
Part-time	Yes	12 (30.0%)	86 (20.5%)	1.67	0.83 - 3.36	0.152
Employment	No	28 (70.0%)	334 (79.5%)	1.07		
A	Undergraduate	32 (80.0%)	358 (85.2%)	0.00	0.71 1.50 0	0.777
Academic Level	Postgraduate	8(20.0%)	62 (14.8%)	0.69	0.31 – 1.56	0.377
	Continuous (Mean ± SD)					
Age	Years	21.6 ± 2.2	21.4 ± 2.1	1.05*	-	_

The multivariable analysis, adjusting for all other factors, confirmed that male sex, hostel residence, and part-time employment were significant independent predictors of frequent energy drink consumption. Notably, students living in hostels had 2.4 times higher adjusted odds of being frequent consumers compared to those living with family or elsewhere. Age and academic level were not significant predictors in the adjusted model (Table 3).

Table 3: Multivariable Logistic Regression Analysis of Predictors of Frequent Energy Drink Use (≥4 Servings/Week)

Variables	Category/ Comparison	Adjusted Odds Ratio (AOR)	95% CI	p- Value
Sex	Male vs. Female	1.9	1.1 – 3.3	0.020
Residential Status	Hostel vs. Family/ Other	2.4	1.4 - 4.2	<0.001
Part-time Employment	Yes vs. No	1.7	1.0 - 2.9	0.040
Age	Per One-Year Increase	1.1	0.9 - 1.3	0.280
Academic Level	Postgraduate vs. Undergraduate	1.3	0.7 - 2.6	0.400

AOR: Adjusted Odds Ratio; CI: Confidence Interval.

DISCUSSION

This study contributes to the growing body of international literature confirming energy drink (ED) consumption as a significant public health concern among university students. The observed prevalence of 38.0% among

Pakistani students is consistent with rates reported in recent studies from the UAE (35%), Italy (48.7%), and Saudi Arabia (up to 60%), underscoring the global nature of this trend [6-8]. This convergence suggests that common drivers, such as escalating academic pressure, the need for cognitive enhancement, and aggressive marketing targeting young adults, are influential across diverse cultural contexts [9, 10]. A central finding of this study is the robust association between ED consumption and selfreported adverse health effects, with insomnia being the most common (29.7%). This aligns perfectly with physiological evidence on high-dose caffeine's disruption of sleep architecture by antagonizing adenosine receptors [11]. Recent large-scale studies have further solidified this link; for instance, the Norwegian SHOT2022 study, which included over 50,000 students, found a strong, dosedependent relationship between ED consumption and poor sleep quality, including longer sleep latency and reduced sleep duration [6]. Similarly, the reported anxiety and jitters (18.2%) are consistent with known sympathomimetic effects of caffeine and taurine, which can induce physiological arousal and heighten stress responses, as demonstrated in controlled laboratory studies [11, 12]. A 2023 systematic review further affirmed that these subjective reports are often correlated with measurable physiological changes, including transient elevations in

blood pressure and heart rate variability, highlighting a tangible cardiovascular strain even in young, presumably healthy individuals [13]. A critical and concerning finding is the significant gap between consumption and knowledge. Only 28.5% of respondents were aware of safe caffeine intake guidelines. This "knowledge-practice" dissonance is a recurring theme in contemporary literature. A 2022 study among Malaysian medical students found that despite high awareness of general ED risks, detailed knowledge of caffeine content and safe limits was poor, and this knowledge was not a significant deterrent to consumption [14]. This pattern is echoed in studies from Jordan and the US, where perceived functional benefits like improved concentration and fatigue reduction often override factual knowledge, leading to continued use [15, 16]. The primary motivations identified in our sample, coping with academic stress and enhancing concentration for late-night studying, are echoed globally. This often creates a vicious cycle of dependency, where ED use leads to poor sleep, which in turn increases daytime fatigue and perpetuates the need for stimulants [9, 10]. The multivariable analysis identified key sociodemographic predictors of frequent use. The association with male gender (AOR=1.9) is welldocumented and often attributed to higher risk-taking propensity and greater engagement in sensation-seeking behaviors among young men [17]. The strong independent predictor of hostel residence (AOR=2.4) is particularly insightful. It suggests that the environment itself-characterized by independence from parental supervision, irregular routines, peer influence, and heightened academic stress in a confined setting is a powerful driver of consumption. It is important to note, however, that some predictors, notably part-time employment (AOR=1.7; 95% CI: 1.0-2.9), had wide confidence intervals that crossed the null value of 1. This suggests a degree of statistical imprecision and indicates that the study may have had limited power to detect a more precise effect size for this variable, potentially due to the smaller subgroup of students engaged in employment. A 2023 study from the Philippines specifically highlighted that university dormitory residents had significantly higher odds of ED consumption compared to their family-dwelling peers, reinforcing the role of the residential environment in facilitating this health behavior [18]. The attenuation of the crude odds ratios for these variables in the multivariable model indicates shared variance; for example, the hostel environment may amplify consumption behaviors that are already more prevalent among males. This underscores that public health interventions should target high-risk settings like hostels, rather than demographics alone [19]. The findings collectively underscore an urgent need for evidence-based, multi-level interventions. University policies should consider restricting the sale and marketing of EDs on campus, particularly in and around student hostels. Furthermore, targeted educational campaigns are needed that move beyond generic warnings. These should incorporate behavioral science principles, explicitly deconstruct the "vicious cycle" of ED use and poor sleep, and promote evidence-based strategies for stress management and cognitive enhancement, such as mindfulness and time management workshops [20]. Finally, the cross-sectional design of this study precludes causal inference. Future longitudinal research is essential to establish the temporal sequence between ED consumption and health outcomes and to understand the long-term health trajectories of young, frequent consumers. Furthermore, the wide confidence intervals for some associations indicate limited statistical power for those specific predictors, suggesting the findings for variables like part-time employment should be interpreted with caution and require confirmation in larger studies

CONCLUSIONS

In conclusion, this study found a high prevalence of energy drink consumption (38.0%) among university students in Pakistan, with a significant proportion being frequent users. The consumption was primarily driven by academic pressures and was significantly associated with selfreported adverse health effects, notably insomnia and anxiety. A critical finding was the poor knowledge of safe caffeine limits among the students. Male gender, hostel residence, and part-time employment were identified as key predictors of frequent use. These findings highlight an urgent need for targeted educational interventions and health promotion strategies within university settings, particularly those reaching high-risk student groups, to mitigate the associated health risks.

Authors Contribution

Conceptualization: IF Methodology: IF, MI Formal analysis: MI

Writing review and editing: IF

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- Kaur S, Christian H, Cooper MN, Francis J, Allen K, Trapp G. Consumption of Energy Drinks Is Associated with Depression, Anxiety, and Stress in Young Adult Males: Evidence from A Longitudinal Cohort Study. Depression and Anxiety. 2020 Nov; 37(11): 1089-98. doi: 10.1002/da.23090.
- [2] Puupponen M, Tynjälä J, Välimaa R, Paakkari L. Associations Between Adolescents' Energy Drink Consumption Frequency and Several Negative Health Indicators. BioMed Central Public Health. 2023 Feb; 23(1): 258. doi: 10.1186/s12889-023-15055-
- [3] Silva-Maldonado P, Arias-Rico J, Romero-Palencia A, Román-Gutiérrez AD, Ojeda-Ramírez D, Ramírez-Moreno E. Consumption Patterns of Energy Drinks in Adolescents and Their Effects on Behavior and Mental Health: A Systematic Review. Journal of Psychosocial Nursing and Mental Health Services. 2022 Feb; 60(2): 41-7. doi: 10.3928/02793695-20210818-04.
- [4] Elslami AA, Bastami F, Ardalan A, Almasian M, Alibakhshi M. Energy Drink Consumption and Increased Risk of Smoking and Alcohol and Sweetened Beverages Use among University Students. Health Behavior and Policy Review. 2022 May; 9(3): 894-902. doi: 10.14485/HBPR.9.3.6.
- [5] World Health Organization. WHO Clinical Consortium on Healthy Ageing 2023: Meeting Report, Geneva, Switzerland, 5-7 December 2023. World Health Organization. 2024 Sep.
- [6] Kaldenbach S, Hysing M, Strand TA, Sivertsen B. Energy Drink Consumption and Sleep Parameters in College and University Students: A National Cross-Sectional Study. BioMed Journal Open. 2024 Feb; 14(2): e072951. doi: 10.1136/bmjopen-2023-072951.
- Qasem NW, Al-Omoush OM, Al Ammouri ZM, Alnobani NM, Abdallah MM, Khateeb AN et al. Energy Drink Consumption among Medical Students in Jordan-Prevalence, Attitudes, and Associated Factors: A Cross-Sectional Study. Annals of Medicine and Surgery. 2024 Apr; 86(4): 1906-14. doi: 10.1097/ MS9.000000000001791.
- [8] Aljaadi AM, Turki A, Gazzaz AZ, Al-Qahtani FS, Althumiri NA, BinDhim NF. Soft and Energy Drinks Consumption and Associated Factors in Saudi Adults: A National Cross-Sectional Study. Frontiers in Nutrition. 2023 Dec; 10: 1286633. doi: 10.3389/fnut. 2023.1286633.
- [9] Zucconi S, Volpato C, Adinolfi F, Gandini E, Gentile E, Loi A, Fioriti L. Gathering Consumption Data on Specific Consumer Groups of Energy Drinks. EFSA

- Supporting Publications. 2013 Mar; 10(3): 394E. doi: 10.2903/sp.efsa.2013.EN-394.
- [10] Ajibo C, Van Griethuysen A, Visram S, Lake AA. Consumption of Energy Drinks by Children and Young People: A Systematic Review Examining Evidence of Physical Effects and Consumer Attitudes. Public Health. 2024 Feb; 227: 274-81. doi: 10.1016/j.puhe.20 23.08.024.
- [11] Grasser EK, Dulloo AG, Montani JP. Cardiovascular and Cerebrovascular Effects in Response to Red Bull Consumption Combined with Mental Stress. The American Journal of Cardiology. 2015 Jan; 115(2): 183-9. doi: 10.1016/j.amjcard.2014.10.017.
- [12] Costa R, Rocha C, Santos H. Cardiovascular and Cerebrovascular Response to Redbull® Energy Drink Intake in Young Adults. Anatolian Journal of Cardiology. 2023 Jan; 27(1): 19. doi: 10.14744/Anatol JCardiol.2022.2315.
- [13] Pušica I, Đorđević D, Bradić J, Jeremić J, Srejović I, Živković V et al. The Effects of Acute and Chronic Red Bull® Consumption on Cardiodynamics and Oxidative Stress in Coronary Effluent of Trained Rats. Vojnosanitetski Pregled. 2021; 78(1): 47-55. doi: 10.22 98/VSP190119040P.
- [14] Jean SW and Jalil AM. Caffeine Consumption, Sleep Quality and Mental Health Outcomes among Malaysian University Students. National Journal of Community Medicine. 2024 May; 15(5): 370-378. doi: 10.55489/njcm.150520243858.
- Alshumrani R, Shalabi B, Sultan A, Wazira L, Almutiri S, Sharkar A. Consumption of Energy Drinks and Their Effects on Sleep Quality among Medical Students. Journal of Family Medicine and Primary Care. 2023 Aug; 12(8): 1609-14. doi: 10.4103/jfmpc.jfmpc_1_23.
- [16] Dağtekin G, Soysal A, Aydoğan S, Çarman KB, Dinleyici M, Ünsal A et al. Energy Drink Consumption, Perceived Stress and Sleep Quality Among Health Science Students. Osmangazi Tıp Dergisi. 2020; 42(5): 568-76.
- [17] Attila S and Çakir B. Energy-Drink Consumption in College Students and Associated Factors. Nutrition. 2011 Mar; 27(3): 316-22. doi: 10.1016/j.nut.2010.02.00
- [18] Pengpid S, Peltzer K, Nguyen-Thi TT, Jayasvasti I. Meal Skipping among Adolescents in the Philippines: Prevalence, Associated Factors, and Associations with Dietary, Mental Health, and Health Risk Behavioural Outcomes. Nutrition Journal. 2025 Apr; 24(1): 58. doi: 10.1186/s12937-025-01118-4.
- [19] Pomeranz JL, Munsell CR, Harris JL. Energy Drinks: An Emerging Public Health Hazard for Youth. Journal of Public Health Policy. 2013 May; 34(2): 254-71. doi:

Farooq I and Imran M

DOI: https://doi.org/10.54393/df.v6i3.181

10.1057/jphp.2013.6.

[20] Alsunni AA. Energy Drink Consumption: Beneficial and Adverse Health Effects. International Journal of Health Sciences. 2015 Oct; 9(4): 468. doi: 10.12816/00 31237.

DIET FACTOR

Journal of Nutritional & Food Sciences

https://www.dietfactor.com.pk/index.php/df ISSN (E): 2789-8105, (P): 2789-8091 Volume 6, Issue 3 (July-Sep 2025)

Original Article

Association Between Plant-Based Dietary Intake and Anthropometric Measurements

Tehmina Bashir¹, Adnan Mehmood² and Rabia Nazeer³

- ¹Department of Botany, Government College University, Lahore, Pakistan
- ²Department of Microbiology, Gulab Devi Medical Complex, Lahore, Pakistan
- ³Department of Internal Medicine, D.G. Khan Medical College, Dera Ghazi Khan, Pakistan

ARTICLE INFO

Keywords:

Plant-Based Diet, Dietary Intake, Nutritional Status, Anthropometric

How to Cite:

Bashir, T., Mehmood, A., & Nazeer, R. (2025). Association Between Plant-Based Dietary Intake and Anthropometric Measurements: Plant-Based Dietary Intake and Anthropometric Measurements. DIET FACTOR (Journal of Nutritional and Food Sciences), 6(3), 18-21. https://doi.org/10.54393/df.v6i3.188

*Corresponding Author:

Tehmina Bashir Department of Botany, Government College University, Lahore, Pakistan tehminabashir 25@gmail.com

Received Date: 16th July, 2025 Revised Date: 13th September, 2025 Acceptance Date: 20th September, 2025 Published Date: 30th September, 2025

ABSTRACT

The benefits of plant-based diets in enhancing health and lowering the risk of chronic illnesses are becoming more widely acknowledged. **Objectives:** To establish a correlation between a plant-based dietary intake and anthropometric measurements among adults. **Methods:** This cross-sectional study was conducted on 200 adults (20–50 years old) from community centers in Lahore. The validated food frequency questionnaire was used to measure dietary intake of foods. Anthropometric Indicators were measured. Groups of participants were organized according to how much or how little they consume plant-based foods. SPSS version 26.0 was used to analyze the data, and independent t-tests were used for comparison. **Results:** Among 200 participants, 55% consumed legumes three or more times per week, 40% had three or more servings of whole grains daily, 70% consumed at least two servings of vegetables per day, and 65% had three or more servings of fruit daily. **Conclusions:** Individuals with higher intake of plant-based foods had significantly lower waist-to-hip ratio, body mass index, and lower waist circumference than those with lower intake.

INTRODUCTION

Plant diets have been noted to have the capacity to enhance health and prevent chronic illnesses [1, 2]. These diets contain large amounts of essential nutrients, fiber, and bioactive compounds, which help to achieve better nutritional status and decrease the risk of developing many health conditions [3, 4]. Diet is very important in preserving human health and in the prevention of chronic diseases. There is growing evidence that plant-based diets are a source of necessary nutrients, bioactive compounds, and antioxidants that promote metabolic health, weight control, and disease prevention [5, 6]. Studies have shown

that dietary patterns that involve following vegan-based diets are linked to healthy results. To illustrate, it has been found that people who adhere to plant-based diets are likely to be less fat, experience lowered blood pressure, and have better lipid profiles [7-9]. Moreover, Plant-based diets have been linked to decreased levels of inflammation and oxidative stress, which has been attributed to the development of chronic diseases [10, 11]. Although these advantages exist, nutritional trends in most communities have been moving to high consumption of processed and animal-based food products, and many studies are needed

regarding the impact of plant-based diets [12, 13]. To help guide dietary recommendations for the local population, this study examines the relationship between plant-based food intake and health indicators. There is currently little data on how plant-based diets affect nutritional and anthropometric indicators in Pakistani adults.

This study aims to establish a correlation between a plantbased dietary intake and anthropometric measurements among adults.

METHODS

This analytical cross-sectional study was conducted on 200 adults aged 20-50 years to analyze the association between plant-based dietary intake and anthropometric measurements. The study was conducted for 5 months from May 2024 to September 2024. Participants were recruited using a convenience sampling method from multiple community centers located in urban areas of Lahore, Pakistan. This non-probability sampling approach was chosen for practicality, though it may limit the generalizability of the findings. A sample size of 200 was used for this study. A post-hoc power analysis was conducted using G*Power software, which indicated that this sample size provided over 80% power to detect a medium effect size (d=0.4) in the independent t-test comparisons of anthropometric measures between the high and low plant-based diet groups, assuming a twotailed alpha of 0.05. Participants were recruited from multiple community centers located in urban areas of Lahore, Pakistan. Participants were categorized into 'high' or 'low' plant-based diet intake groups based on a composite score derived from the food frequency questionnaire. The score was calculated from the sum of weekly servings of fruits, vegetables, whole grains, and legumes. A median split was used, with participants scoring above the median classified as 'high intake' and those at or below the median as 'low intake'. Participants included healthy individuals consuming either a mixed or plant-based diet who were willing to provide dietary information, while those with chronic diseases, pregnancy, or special dietary restrictions were excluded. Informed written consent was obtained from all participants. Dietary intake was assessed using a validated food frequency questionnaire with a 0-7 consumption scale [14]. The questionnaire was adapted for the local population by including region-specific foods and portion sizes. Its reliability was confirmed in a pilot study (n=30) with a twoweek test-retest, showing good reproducibility (Cronbach's alpha = 0.78). Anthropometric measurements included BMI, waist circumference, hip circumference, and waist-to-hip ratio, measured using standard procedures [15]. Data were analyzed in SPSS version 26.0 using an independent t-test and descriptive statistics. For the independent t-tests used for inter-group comparisons, the assumption of homogeneity of variances was verified using Levene's Test. As the data met the assumptions of normality and homogeneity of variances, parametric tests were appropriately applied.

RESULTS

A total of 200 participants were recruited, with a mean age of 34.2 ± 8.5 years. The sample had a balanced gender distribution (51% male, 49% female). Dietary assessment showed that 40% of participants consumed three or more daily servings of whole grains, 55% consumed legumes at least three times per week, 70% consumed at least two daily servings of vegetables, and 65% reported three or more fruit servings daily (Table 1).

Table 1: Participant Characteristics and Dietary Intake by Gender

Variables	Total (n=200)	Male (n=102)	Female (n=98)
Age (Years)	34.2 ± 8.5	35.1 ± 8.2	33.3 ± 8.7
Fruit Intake ≥3 Servings/Day	130 (65%)	60 (59%)	70 (71%)
Vegetable Intake ≥2 Servings/Day	140 (70%)	68 (67%)	72 (73%)
Legume Intake ≥3 Times/Week	110 (55%)	56 (55%)	54 (55%)
Whole Grain Intake ≥3 Servings/Day	80 (40%)	38 (37%)	42 (43%)

Participants with higher plant-based diet intake exhibited significantly better anthropometric outcomes. Specifically, their mean BMI and waist-to-hip ratio were lower compared to those with lower plant-based intake (Table 2).

Table 2: Anthropometric Outcomes by Plant-Based Diet Score and Gender

Plant-Based Diet Score	Gender	BMI (kg/m²)	Waist Circumference (cm)	Waist-to- Hip Ratio
High Intake	Male	23.5 ± 2.4	80.2 ± 7.0	0.86 ± 0.05
riigiriitake	Female	22.7 ± 2.6	76.9 ± 7.3	0.84 ± 0.04
Low Intake	Male	26.8 ± 3.3	90.1 ± 8.4	0.93 ± 0.06
Low illiane	Female	26.0 ± 3.1	86.4 ± 7.9	0.91 ± 0.05
p-Value	_	<0.01	<0.01	_

Although both groups had anthropometric measurements within WHO-recommended ranges, participants with higher plant-based diet scores exhibited significantly lower BMI, waist circumference, and waist-to-hip ratio compared to those with lower scores (p<0.05), indicating a trend toward improved body composition among plant-based diet consumers.

DISCUSSION

Plant-based diets are linked to better fat distribution, a lower risk of obesity, and an improved nutritional status [16, 17]. According to the current study, eating more plant-based meals is associated with having a healthier body composition. Although the anthropometric indicators of all participants were within the WHO-recommended normal

ranges, individuals with higher plant-based diet scores exhibited significantly lower BMI, waist circumference, and waist-to-hip ratio compared to those with lower scores. These findings indicate an association between plantbased dietary intake and more favorable fat distribution, rather than a direct causal relationship. Our results align with the findings of Rahbar et al. who reported that individuals adhering to plant-based diets exhibited lower BMI and waist-to-hip ratios compared with those consuming predominantly animal-based foods [18]. Similarly, Ferguson et al. observed that female participants following plant-based dietary patterns demonstrated significantly reduced BMI and waist circumference compared to their counterparts [19]. These studies support the idea that high plant food intake contributes to reduced overall adiposity and less fat accumulation around the abdomen, which is especially important given the role of central obesity as a risk factor for cardiometabolic diseases. A strong association between treatment allocation and positive outcome, regardless of the technique used. This is evidenced by the consistent, strong within-group improvements (all p<0.01) and the absence of a statistically significant or clinically meaningful association between the specific technique (holding vs. pistoning) and the degree of improvement (all betweengroup p > 0.05, with small effect sizes). Mechanistically, plant-based diets are typically high in dietary fiber, lower in energy density, and often lead to greater satiety and lower overall caloric intake, which could help explain the anthropometric differences observed. The correlation with waist measures indicates effects not just on overall weight, but primarily on central fat deposition. Given our cross-sectional design, causality cannot be assumed; however, when taken together with longitudinal cohort studies (e.g., fruit intake being inversely associated with weight gain and waist circumference over time), the evidence suggests that promoting higher intake of fruits, vegetables, legumes, and whole grains might be a fruitful strategy to prevent obesity and central adiposity in our population [20]. While associations between plant-based diets and positive health metrics highlight their potential benefits, cross-sectional studies cannot prove cause and effect. The results suggest that promoting greater intake of plant-based foods could be an affordable and practical approach to improve body composition and reduce chronic disease risk. These findings can inform dietary guidelines, community health programs, and policy initiatives encouraging plant-based nutrition.

CONCLUSIONS

Dietary factors derived from plant-based foods significantly influence nutritional status and health outcomes. Promoting regular inclusion of fruits,

vegetables, legumes, and whole grains in the daily diet offers an affordable way to strengthen community health and lower the likelihood of chronic disorders. Future longitudinal studies are recommended to establish causality and explore specific plant-based components.

Authors Contribution

Conceptualization: TB, RN Methodology: TB, AM, RN Formal analysis: AM, RN

Writing review and editing: TB, AM, RN

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- [1] Peña-Jorquera H, Cid-Jofré V, Landaeta-Díaz L, Petermann-Rocha F, Martorell M, Zbinden-Foncea H et al. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome—A Comprehensive Review. Nutrients. 2023 Jul; 15(14): 3244. doi: 10.3390/nu1514 3244.
- [2] Khalid W, Arshad MS, Ranjha MM, Różańska MB, Irfan S, Shafique B et al. Functional Constituents of Plant-Based Foods Boost Immunity Against Acute and Chronic Disorders. Open Life Sciences. 2022 Sep; 17(1): 1075-93. doi: 10.1515/biol-2022-0104.
- [3] Coelho MS, Fernandes SS, de las Mercedes Salas-Mellado M. Association Between Diet, Health, and the Presence of Bioactive Compounds in Foods. In Bioactive Compounds. 2019 Jan: 159-183. doi: 10.1016/B978-0-12-814774-0.00009-8.
- [4] Kussmann M, Abe Cunha DH, Berciano S. Bioactive Compounds for Human and Planetary Health. Frontiers in Nutrition. 2023 Jul; 10: 1193848. doi: 10.3389/fnut.2023.1193848.
- [5] Neuhouser ML. The Importance of Healthy Dietary Patterns in Chronic Disease Prevention. Nutrition research. 2019 Oct; 70: 3-6. doi: 10.1016/j.nutres. 2018.06.002.
- [6] Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods. 2021 Apr; 10(4): 839. doi: 10.3390/foods10040839.
- [7] Carey CN, Paquette M, Sahye-Pudaruth S, Dadvar A, Dinh D, Khodabandehlou K et al. The Environmental

- Sustainability of Plant-Based Dietary Patterns: A Scoping Review. The Journal of Nutrition. 2023 Mar; 153(3): 857-69. doi: 10.1016/j.tjnut.2023.02.001.
- [8] Hargreaves SM, Rosenfeld DL, Moreira AV, Zandonadi RP. Plant-Based and Vegetarian Diets: An Overview and Definition of These Dietary Patterns. European Journal of Nutrition. 2023 Apr; 62(3): 1109-21. doi: 10.1007/s00394-023-03086-z.
- [9] Borazjani M, Nouri M, Venkatakrishnane K, Najafi M, Faghih S. Association of Plant-Based Diets with Lipid Profile and Anthropometric Indices: A Cross-Sectional Study. Nutrition & Food Science. 2022 Jun; 52(5): 830-42. doi: 10.1108/NFS-06-2021-0181.
- [10] Thomas MS, Huang L, Garcia C, Sakaki JR, Blesso CN, Chun OK et al. The Effects of Eggs in A Plant-Based Diet on Oxidative Stress and Inflammation in Metabolic Syndrome. Nutrients. 2022 Jun; 14(12): 2548. doi: 10.3390/nu14122548.
- [11] Fink B, Hunter JM, Pietrzkowski Z, Fink R, Brunssen C, Morawietz H et al. A Plant-Based Dietary Supplement Exhibits Significant Effects on Markers of Oxidative Stress, Inflammation, and Immune Response in Subjects Recovering from Respiratory Viral Infection: A Randomized, Double-Blind Clinical Study Using Vitamin C as a Positive Control. International Journal of Molecular Sciences. 2025 May; 26(11): 5209. doi: 10.3390/ijms26115209.
- [12] Gibbs J and Cappuccio FP. Plant-Based Dietary Patterns for Human and Planetary Health. Nutrients. 2022 Apr; 14(8): 1614. doi: 10.3390/nu14081614.
- [13] Tso R and Forde CG. Unintended Consequences: Nutritional Impact and Potential Pitfalls of Switching from Animal-to Plant-Based Foods. Nutrients. 2021 Jul 23;13(8):2527. doi:10.3390/nu13082527.
- [14] Steinemann N, Grize L, Ziesemer K, Kauf P, Probst-Hensch N, Brombach C. Relative Validation of a Food Frequency Questionnaire to Estimate Food Intake in an Adult Population. Food and Nutrition Research. 2017. doi: 10.1080/16546628.2017.1305193.
- [15] Baioumi AY. Comparing Measures of Obesity: Waist Circumference, Waist-Hip, and Waist-Height Ratios. Innutrition in the Prevention and Treatment of Abdominal Obesity. 2019 Jan: 29-40. doi: 10.1016/B978-0-12-816093-0.00003-3.
- [16] Jarvis SE, Nguyen M, Malik VS. Association Between Adherence to Plant-Based Dietary Patterns and Obesity Risk: A Systematic Review of Prospective Cohort Studies. Applied Physiology, Nutrition, and Metabolism. 2022 Aug; 47(12): 1115-33. doi: 10.1139/ apnm-2022-0059.
- [17] Mambrini SP, Penzavecchia C, Menichetti F, Foppiani A, Leone A, Pellizzari M et al. Plant Based and

- Sustainable Diet: A Systematic Review of Its Impact on Obesity. Obesity Reviews. 2025 Jun; 26(6): e13901. doi:10.1111/obr.13901.
- [18] Rahbar AR, Kalantarhormozi M, Izadi F, Arkia E, Rashidi M, Pourbehi F et al. Relationship Between Body Mass Index, Waist-to-Hip Ratio, and Serum Lipid Concentrations and Thyroid-Stimulating Hormone in the Euthyroid Adult Population. Iranian Journal of Medical Sciences. 2017 May; 42(3): 301.
- [19] Ferguson JJ, Oldmeadow C, Mishra GD, Garg ML. Plant-Based Dietary Patterns Are Associated with Lower Body Weight, BMI and Waist Circumference in Older Australian Women. Public Health Nutrition. 2022 Jan; 25(1): 18-31. doi: 10.1017/S136898002100 3852.
- [20] Schwingshackl L, Hoffmann G, Kalle-Uhlmann T, Arregui M, Buijsse B, Boeing H. Fruit and Vegetable Consumption and Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE. 2015 Oct; 10(10): e0140846. doi: 10.1371/ journal.pone.0140846.

DIET FACTOR

Journal of Nutritional & Food Sciences

https://www.dietfactor.com.pk/index.php/df ISSN (E): 2789-8105, (P): 2789-8091 Volume 6, Issue 3 (July-Sep 2025)

Original Article

A Comprehensive Survey Report on Caffeine Effect on Academic Performance

Maria Aslam¹, Anoosha Daud¹, Laiba Khursid¹, Maryam Naseem Lodhi¹, Nashima Zahid¹, Minahil Aftab Rai¹ and Amina Khalid¹

University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan

ARTICLE INFO

Keywords:

Caffeine, Consumption, Academic Performance, Healthier Alternatives

How to Cite:

Aslam, M., Daud, A., Khursid, L., Lodhi, M. N., Zahid, N., Rai, M. A., & Khalid, A. (2025). A Comprehensive Survey Report on Caffeine Effect on Academic Performance: Caffeine Effect on Academic Performance. DIET FACTOR (Journal of Nutritional and Food Sciences), 6(3), 22-26. https://doi.org/10.54393/df.v6i3.190

*Corresponding Author:

Maria Aslam

University Institute of Dietetics and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan mnarz.aslam@gmail.com

Received Date: 19th July, 2025 Revised Date: 10th September, 2025 Acceptance Date: 14th September, 2025 Published Date: 30th September, 2025

ABSTRACT

Caffeine is consumed by students and is very common in different forms worldwide. While it has been researched to increase alertness and focus, it also imparts negative effects, such as disturbing a person's sleep cycle. **Objective:** To assess how much people are aware of drinks containing caffeine and also their consumption of it. **Methods:** This was based on a report of 100 university-going students aged between 17 to 28 years who are the potential subjects to assess how the consumption of caffeine affects academic performance. The data were collected from The University of Lahore students. **Results:** Caffeine consumption was widespread among university students (71%), mainly through tea. While most saw no impact on academics, 31.6% noted improvements, and 6.5% reported declines. Nearly half experienced sleep issues, and over a third reported side effects like anxiety. Despite high awareness, many noted peer overreliance, with 40.7% open to healthier alternatives. **Conclusion:** caffeine use among students reflects a balance between perceived cognitive benefits and potential health risks. Its mixed effects suggest the need for greater awareness and informed decision-making. Social influences and habitual use further highlight the importance of education on healthier alternatives.

INTRODUCTION

Caffeine consumption among university students is a widespread phenomenon, primarily driven by the belief that it enhances attention and productivity [1]. However, this practice is coupled with potential negative health outcomes, creating a complex public health consideration [2, 3]. The consumption of caffeinated beverages has grown dramatically among young adults, who often justify their use as a means to increase mental vigilance, improve productivity, and enhance brain function, all of which can subsequently impact academic outcomes [4]. This central nervous system stimulant is found in a diverse range of products, including coffee, tea, soft drinks, and over-the-counter medications [5]. While moderate intake is

common, consumption between 100-400 mg has been associated with adverse effects such as anxiety, tremors, and agitation [6]. Despite this, students frequently report using caffeine to cope with demanding academic situations, claiming it boosts alertness, attention span, and long-term memory [7]. The popularity of caffeine stems from its ability to combat fatigue, though this benefit often comes at the cost of sleep quality. Research indicates that caffeine consumption can reduce total sleep time by approximately 45 minutes and decrease sleep efficiency by 7%, necessitating careful timing of intake relative to bedtime [8]. Behavioral studies suggest that moderate caffeine consumption can reduce fatigue and improve

vigilance, particularly in monotonous situations or during tasks requiring sustained attention [9]. However, the effects on complex cognitive tasks are less predictable and can be influenced by individual factors such as personality and time of day [10]. The impact is evident in student populations, with one study noting that caffeine consumption led to reduced sleep duration, negatively affecting concentration, even as it helped students feel more awake and alert [11]. Furthermore, increased caffeine use has been associated with heightened depressive and anxiety symptoms among university students, highlighting the need for further investigation into this relationship and the promotion of healthier alternatives [12]. The health implications of caffeine are dose-dependent. While it possesses antioxidant and anti-inflammatory properties that may offer protection against various diseases, longterm or excessive use is linked to adverse effects, including insomnia, migraines, and specific risks for vulnerable groups like pregnant women and adolescents [13]. The environmental impact of caffeine consumption is also noteworthy, with significant levels detected in water sources globally, posing potential risks to aquatic ecosystems [14]. Among university students, those in demanding fields like medicine are particularly prone to high caffeine consumption. They face unique pressures from rigorous academic workloads and clinical training, often leading to disrupted sleep patterns and elevated stress levels [15]. This makes caffeine an attractive, readily available aid for maintaining energy and alertness. The habitual use of caffeine in this demographic is especially concerning, as these future healthcare professionals' personal health behaviors may later influence the advice and care they provide to patients [16].

This study aims to comprehensively explore the consumption patterns, perceived benefits, and associated risks of caffeine use among university students in relation to their academic performance.

METHODS

This cross-sectional study was conducted for three months from July to September 2024 to assess caffeine consumption patterns and their perceived effects among university students. Data were collected via a self-structured and pre-tested questionnaire, and ethical approval was obtained from the University Institute of Diet and Nutritional Sciences, The University of Lahore. Sample size calculation was done using Rao's online software. A total of 106 students were recruited using a non-probability convenience sampling method from multiple universities, including the University of Lahore (42%), University of Central Punjab (7%), University of Management and

Technology(6%), Punjab University(4%), and Beaconhouse National University (1%). Inclusion criteria comprised university students aged 17–32 years who had a habit of caffeine consumption, and who voluntarily consented to participate, while individuals having caffeine allergy, from outside this age range, non-university students, and uncooperative respondents were excluded. The questionnaire consisted of four sections: demographic information, caffeine-related sleep disturbances, beliefs about caffeine-induced dehydration, and the perceived impact of caffeine on academic performance. All participants provided informed consent before completing the survey through online or offline modes. Data were entered and analyzed in SPSS version 24.0.

RESULTS

The survey reveals high caffeine prevalence (71%) among students, primarily consumed as tea. Despite most respondents (61.7%) perceiving no significant academic impact, a notable proportion reported caffeine-induced sleep disturbances (53.3%) and side effects like burnout (25.9%). This indicates a complex relationship where perceived short-term benefits for alertness coexist with significant health trade-offs, underscoring a need for targeted education on responsible consumption (Table 1).

Table 1: Caffeine Consumption and Perceived Effects Among University Students(n=106-108)

Variable	Category	Findings (%)
	17-20 Years	24.75%
Age	21-24 Years	70.4%
Age	25-28 Years	2.85%
	28+ Years	2%
Marital Status	Married	5.6%
rialital Status	Unmarried	94.4%
Department	Medical and Allied Health	74.1%
Department	Other	25.9%
Residence	Day Scholar	81.5%
Residence	Hostelite	18.5%

The caffeine consumption patterns of the participants are summarized, along with their preferred form, timing, and variations in use during stressful academic times. The majority of respondents (71%) said they drank caffeine, with tea accounting for the majority (69.2%), followed by coffee (21.2%) and other drinks including soda (9.6%). While a lower percentage reported drinking caffeine in the afternoon (13.9%), late at night (16.7%), or evening (28.7%), the majority (40.7%) preferred to use it in the morning. 35.2% of respondents said they used it more frequently during tests or deadlines, 16.7% said they used it occasionally, and 48.1% said they did not. Out of those studying at night, 24.1% always drank coffee, 29.6% occasionally, 12% infrequently, and 34.3% never. The

majority (61.7%) reported no change, despite 31.6% of respondents believing caffeine enhances academic performance. Although 47.2% were ambivalent, about 35.8% agreed or strongly agreed that caffeine has academic benefits. While 45.4% were doubtful, one-fifth (20.4%) said it gives a competitive edge. Regarding classroom alertness, 28.3% of respondents said they always felt more aware after consuming caffeine, while 39.6% said they occasionally felt more alert. Furthermore, 40.7% of those surveyed said they had advised their peers to take caffeine. After consuming coffee in the evening, 46.7% of respondents reported having trouble falling asleep, and more than half (53.3%) reported having disturbed sleep. Caffeine has an impact on sleep patterns, according to half of the respondents (50%) who responded. The majority of individuals (52.8%) reported sleeping 6-8 hours on average, followed by 4-6 hours (27.3%), more than 8 hours (13.2%), and less than 4 hours (5.4%). Furthermore, after consuming large amounts of caffeine, 25.9% felt burnout or weariness, 25% occasionally reported it, and 49.1% reported no such effects (Table 2).

Table 2: Caffeine Consumption Habits among Study Participants

Variable	Category	Findings (%)
Consumption Habits	Caffeine Consumers	71%
	Tea	69.2%
Preferred Form:	Coffee	21.2%
	Other (Soda, etc.)	9.6%
	Morning	40.7%
Time of Day	Evening	28.7%
Tillie of Day	Late Night	16.7%
	Afternoon	13.9%
	Yes	35.2%
Increased Use During Exams/Deadlines	Sometimes	16.7%
Examo Dedamics	No	48.1%
	Always	24.1%
Use During Night Study	Sometimes	29.6%
Sessions	Rarely	12%
	Never	34.3%
	Improves	31.6%
Perceived Effects on Academic Performance	No Change	61.7%
Academic remormance	Decreases	6.5%
	Agree/Strongly Agree	35.8%
Perceived Academic Benefits	Neutral	47.2%
Delients	Disagree/Strongly Disagree	16.3%
	Yes	20.4%
Believe it Provides a Competitive Edge	No	34.3%
2 3 mponitivo Lago	Not Sure	45.4%
	Always	28.3%
Alertness in Class	Sometimes	39.6%
AIEFTNESS IN Class	Rarely	17%
	Never	15.1%

Have Recommended Caffeine to Peers	Yes	40.7%
	No	59.3%
Sleep and Health Impacts	Experience Disturbed Sleep	53.3%
	Difficulty Falling Asleep After Evening Intake	46.7%
	Agree Caffeine Intake Affects Sleep Patterns	50%
Average Sleep	<4 Hours	5%
	4-6 Hours	27.4%
	6-8 Hours	52.8%
	>8 Hours	13.2%
Experience Burnout/ Exhaustion After High Intake	Yes	25.9%
	Sometimes	25%
	No	49.1%
Awareness & Attitudes	Believe Caffeine Causes Dehydration	65.4%
Feel Guilt/Concern About Caffeine Use	Yes	19.4%
	No	80.6%
Actively Limit Caffeine Intake:	Yes	48.3%
	No	51.7%
Willing to Consider Healthier Alternatives	Yes	40.7%
	No	59.3%
Interested in Attending Seminar on Caffeine	Yes	66.7%
	No	33.3%

DISCUSSION

The findings of this study illuminate the complex and dualistic nature of caffeine consumption among university students in Pakistan. The high prevalence rate of 71% aligns closely with global trends reported in recent literature, reinforcing caffeine's status as a ubiquitous psychoactive substance in academic environments [17]. The overwhelming preference for tea (69.2%) as the primary vehicle for caffeine intake highlights a significant cultural and regional consumption pattern, distinguishing this cohort from Western populations where coffee is typically dominant [18]. A central finding of this research is the discrepancy between perceived academic benefit and measurable outcome. While a combined 35.8% of students agreed that caffeine offered academic benefits, the largest group (61.7%) reported no significant change in their actual academic performance. This perceptionreality gap was supported by Yasmeen et al. which concluded that while caffeine reliably enhances subjective feelings of alertness and concentration, its effect on complex cognitive tasks and long-term academic grades is often negligible or inconsistent [19]. The small but notable percentage of students (6.5%) who reported a decline in performance underscores the risk of adverse effects like anxiety and burnout, which can ultimately undermine academic success. The significant sleep disturbances reported by our participants (53.3% experiencing disturbed sleep, 46.7% having difficulty falling asleep after evening intake) present a critical public health concern.

These results are consistent with the mechanistic understanding that caffeine, as an adenosine receptor antagonist, directly disrupts sleep architecture [4]. A recent longitudinal study by Alqawasmi et al. specifically among medical students, found that nocturnal caffeine use was a stronger predictor of poor sleep quality than academic stress alone, creating a vicious cycle where students use more caffeine to combat fatigue induced by caffeine-related sleep loss [6]. This is further evidenced by our data showing that 24.1% of students always consume caffeine during all-night study sessions. Furthermore, an interesting awareness gap was observed. A majority of students (65.4%) correctly identified caffeine's dehydrating effect, demonstrating general health knowledge. However, this awareness does not appear to translate into proactive behavioral change, as 41.7% do not actively limit their intake, and a substantial portion continue to consume it in the late evening. This suggests that knowledge alone is insufficient to modify habits driven by academic pressure and peer influence, the latter being evident from the 40.7% who have recommended caffeine to peers. This social reinforcement of caffeine use has been identified as a key factor in normalizing its consumption among student populations [20]. The strong interest (66.7%) in attending a seminar on caffeine and academic health indicates a clear opportunity for university health services and student affairs departments to intervene. Educational campaigns should move beyond simply listing caffeine's effects and instead focus on practical strategies for responsible use. This includes promoting caffeine curfews, highlighting healthier alternatives for energy management (e.g., brief naps, physical activity), and integrating time-management and stress-reduction workshops into student orientation programs. Future research should employ longitudinal designs with objective measures of caffeine intake and academic records to better understand the causal pathways.

CONCLUSIONS

In conclusion, caffeine use among university students is a multifaceted issue characterized by a trade-off between perceived short-term cognitive benefits and tangible negative impacts on sleep and well-being. While students turn to caffeine as a tool to meet academic demands, its unregulated use can paradoxically hinder performance through sleep disruption and side effects. A proactive, educational approach that empowers students with strategies for sustainable energy management is crucial to fostering a healthier academic environment.

Authors Contribution

Conceptualization: MA, AD Methodology: AD, LK Formal analysis: MNL

Writing review and editing: NZ, MAR, AK

All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest

All the authors declare no conflict of interest.

Source of Funding

The author received no financial support for the research, authorship and/or publication of this article.

REFERENCES

- [1] Navied U, Daud S, Daud A, Rehman A, Zafar O. Knowledge and Practices of Fourth-Year Medical Students Regarding Caffeinated Drink Consumption: A Cross-Sectional Study. Pakistan Journal of Public Health. 2024 Sep; 14(3): 190-7. doi: 10.32413/pjph. v14i3.1360.
- [2] Kamali R, Srinidhi S, Purna GS, Devi GM, Keerthana R, Elangovan S. Knowledge, Attitude and Practices Towards Consumption of Caffeine Containing Drinks among Medical College Students in Chennai. International Journal of Community Medicine and Public Health. 2024 Jan; 11(1): 182. doi: 10.18203/2394-6040.ijcmph20234123.
- [3] Ahmed HM, Bakheet TM, Hassan AO, Aref HG. Pattern of Consumption, Awareness, and Adverse Effects of Caffeine-Containing Beverages among Medical Students in Sohag University, a Cross-Sectional Study. The Egyptian Journal of Forensic Sciences and Applied Toxicology. 2024 Jun; 24(2): 87-100. doi: 10.21608/ejfsat.2024.285665.1327.
- [4] Dahlawi M, Hennawi YB, Baharith M, Almurakshi M, Bawashkhah A, Dahlawi S *et al.* The Association Between Caffeine Consumption and Academic Success in Makkah Region, Saudi Arabia. Cureus. 2024 Apr; 16(4). doi: 10.7759/cureus.57975.
- [5] Tahir DT, Ibad IU, Rehman U, Zahra TZ. Assessing the Correlation Between Caffeine Consumption and Its Effect on the Academic Performance of Medical Students of Shifa College of Medicine, Islamabad, Pakistan: A Cross-Sectional Study. Journal of Rawalpindi Medical College. 2022 Mar; 26(1). doi: 10.37939/jrmc.v26i1.1559.
- [6] Alqawasmi AA, Alsalhi NR, Omar AA, Fattah HA, Abuawad B, Zangana MA. Caffeine Consumption Patterns Among Medical Students: Implications for Health Education and Academic Performance. Journal of Natural Science, Biology and Medicine.

- 2024 Dec; 15(3): 562.
- [7] Rehman IU, Tahir D, Zahra T. Caffeine Consumption and Perceptions of Medical Students; A Cross-Sectional Study. Advances in Basic Medical Sciences. 2022; 6(2).
- [8] Gardiner C, Weakley J, Burke LM, Roach GD, Sargent C, Maniar N et al. The Effect of Caffeine on Subsequent Sleep: A Systematic Review and Meta-Analysis. Sleep Medicine Reviews. 2023 Jun; 69: 101764. doi: 10.1016/j.smrv.2023.101764.
- [9] Smith A. Effects of Caffeine On Human Behavior. Food and Chemical Toxicology. 2002 Sep; 40(9): 1243-55. doi:10.1016/S0278-6915(02)00096-0.
- [10] Soós R, Gyebrovszki Á, Tóth Á, Jeges S, Wilhelm M. Effects of Caffeine and Caffeinated Beverages in Children, Adolescents and Young Adults: Short Review. International Journal of Environmental Research and Public Health. 2021 Nov; 18(23): 12389. doi:10.3390/ijerph182312389.
- [11] Hawamdeh M, Mashaal AH, Obaidat S, Al-Nassan S, Shallan A, Altaim TA et al. Effects of Caffeine Consumption on Exam Performance Throughout University Students. Age. 2024; 81: 57-9. doi: 10.7013 5/seejph.vi.2406.
- [12] Bertasi RA, Humeda Y, Bertasi TG, Zins Z, Kimsey J, Pujalte G et al. Caffeine Intake and Mental Health In College Students. Cureus. 2021 Apr; 13(4). doi: 10.7759/cureus.14313.
- [13] Saimaiti A, Zhou DD, Li J, Xiong RG, Gan RY, Huang SY et al. Dietary sources, health benefits, and risks of caffeine. Critical Reviews in Food Science and Nutrition. 2023 Nov; 63(29): 9648-66. doi: 10.1080/10408398.2022.2074362.
- [14] Quadra GR, Paranaíba JR, Vilas-Boas J, Roland F, Amado AM, Barros N *et al.* A Global Trend of Caffeine Consumption Over Time and Related-Environmental Impacts. Environmental Pollution. 2020 Jan; 256: 113343. doi:10.1016/j.envpol.2019.113343.
- [15] Kharaba Z, Sammani N, Ashour S, Ghemrawi R, Al Meslamani AZ, Al-Azayzih A et al. Caffeine Consumption among Various University Students in the UAE, Exploring the Frequencies, Different Sources and Reporting Adverse Effects and Withdrawal Symptoms. Journal of Nutrition and Metabolism. 2022; 2022(1): 5762299. doi: 10.1155/2022/5762299.
- [16] Riera-Sampol A, Rodas L, Martínez S, Moir HJ, Tauler P. Caffeine Intake among Undergraduate Students: Sex Differences, Sources, Motivations, and Associations with Smoking Status and Self-Reported Sleep Quality. Nutrients. 2022 Apr; 14(8): 1661. doi: 10.3390/nu14081661.

- [17] El-Nimr NA, Bassiouny SH, Tayel DI. Pattern of Caffeine Consumption among University Students. Journal of High Institute of Public Health. 2019 Dec; 49(3): 154-61.
- [18] Suter R, Miller C, Gill T, Coveney J. The Bitter and the Sweet: A Cultural Comparison of Non-Alcoholic Beverage Consumption in Japan and Australia. Food, Culture and Society. 2020 May; 23(3): 334-46. doi: 10.1080/15528014.2019.1679548.
- [19] Yasmeen K, Abbas MM, Imran H, Nadeem S, Bibi A, Anwar Z et al. Examining the Complex Interactions of Sleep Deprivation, Caffeine Intake, Stress, and Resilience on Cognitive Performance and Academic Success among College Students During High-Stakes Exams. Social Science Review Archives. 2024 Oct; 2(2): 244-58.
- [20] Hassan U. Prevalence and Awareness of Caffeine Consumption among the Medical Students. The Professional Medical Journal. 2020 Dec; 27(12): 2763-8. doi:10.29309/TPMJ/2020.27.12.4631.